1			Chapter 23. Europe	
2 3	Coordinating Lead Authors			
4	Sari Kovats (UK), Riccardo Valentini (Italy)			
5	Lead A	Lood Authors		
7	Laurens	Bouwer	(Netherlands), Elena Georgopoulou (Greece), Daniela Jacob (Germany), Eric Martin (France),	
8	Mark Rounsevell (UK), Jean-Francois Soussana (France)			
9	a ()			
10 11	Contril	b uting Ai Beniston	uthors (Switzerland) Philippe Cury (France) Olaf Jonkeren (Italy) Mark Koetse (Netherlands) Markus	
12	Lindner	: (Finland), Andreas Matzarakis (Germany), Annette Menzel (Germany), Marc Metzger (UK), Luca	
13	Montan	arella (Ita	aly), Antonio Navarra (Italy), Martin Price (UK), Boris Revich (Russia), Piet Rietveld	
14	(Nether	lands), Ci	ristina Sabbioni (Italy), Yannis Sarafidis (Greece), Philipp Schmidt-Thomé (Finland), Vegard	
15 16	Skirbek	k (Austri	a), Meriwether Wilson (UK), Thomasz Zylicz (Poland)	
17	Review	Editors		
18	Lucka H	Kajfez Bo	gataj (Slovenia), Roman Corobov (Moldova), Joan O. Grimalt (Spain)	
19				
20	Conton	ta		
21	Conten	15		
23	Executi	ve Summ	ary	
24				
25 26	23.1.	Introduc	ction Scope and Poute Map of Chapter	
20		23.1.1.	Policy Frameworks	
28		23.1.3.	Conclusions from Previous Assessments	
29				
30	23.2	Current	and Future Trends	
32		23.2.1.	Observed and Projected Climate Change	
33		23.2.2.	23.2.2.1. Observed Climate Changes	
34			23.2.2.2 Projected Climate Changes	
35			23.2.2.3. Projected Changes in Extremes	
36 37	23.3	Implicat	tions of Climate Change for Production Systems and Physical Infrastructure	
38	25.5.	23.3.1.	Flood Risk	
39		23.3.2.	Transport	
40		23.3.3.	Energy Production	
41 42		23.3.4.	Lourism Industry and Manufacturing	
43		23.3.6.	Housing, Urban Climates, Planning	
44		23.3.7.	Insurance and Banking	
45				
46	23.4.	Implicat	tions of Climate Change for Agriculture, Fisheries, Forestry, and Bioenergy Production	
48		23.4.1.	Water for Agriculture	
49		23.4.3.	Livestock Production	
50		23.4.4.	Forestry	
51		23.4.5.	Fisheries and Aquaculture	
52 53		23.4.6.	Bioenergy Production 23.4.6.1 Forest Biomass	
54			23.4.6.2. Biofuel for Transport Sector	

$\frac{1}{2}$		23.4.7.	Rural Development	
3	23.5.	Implications of Climate Change for Health and Social Welfare		
4		23.5.1.	Human Population Health	
5		23.5.2.	Health Systems and Critical Infrastructure	
6		23.5.3.	Social Impacts	
7			23.5.3.1. Impacts of Extreme Weather Events/Disasters	
8			23.5.3.2. Impacts of Climate Change on Indigenous Populations in Europe	
9		23.5.4.	Cultural Heritage	
10				
11	23.6.	Implica	tions of Climate Change for the Protection of Environmental Quality and Biological Conservation	
12		23.6.1.	Terrestrial and Freshwater Ecosystems	
13		23.6.2.	Coastal and Marine Ecosystems	
14		23.6.3.	Air Quality	
15		23.6.4.	Soil Protection	
16		23.6.5.	Water Quality	
17				
18	23.7.	Synthes	is of Observed Impacts and Adaptation to Climate Change	
19		23.7.1.	Observed Impacts	
20		23.7.2.	Adaptation is Already Occurring	
21				
22	23.8.	Cross-S	ectoral Adaptation Decisionmaking and Risk Management	
23		23.8.1.	Coastal Zone Management	
24		23.8.2.	Integrated Water Resource Management	
25		23.8.3.	Disaster Risk Reduction and Risk Management	
26		23.8.4.	Land Use Planning	
27		23.8.5.	Mountains	
28				
29	23.9.	Interact	ion between Adaptation and Mitigation Options	
30		23.9.1.	Agriculture, Forestry, Fisheries, Bioenergy	
31		23.9.2.	Biological Conservation	
32		23.9.3.	Social and Health Impacts	
33 34		23.9.4.	Production and Infrastructure	
35	23.10.	Intra-Re	egional and Inter-Regional Issues	
36		23.10.1	. Implications of Climate Change for Distribution of Economic Activity within Europe	
37		23.10.2	. Climate Change Impacts Outside Europe and Inter-Regional Implications	
38				
39	23.11.	Key Kn	owledge Gaps and Research Needs	
40		-		
41	Referen	nces		
42				
43				
44	Execut	ive Sumr	nary	
45				
46	Observ	ed clima	te change is affecting a wide range of flora and fauna, including health relevant exposures	
47	(pollen), food crops (cereals), and the vectors of animal diseases. Shifts in distribution of flora and fauna across			
48	Europe	and from	neighbouring continents are observed. Climate change is adversely affecting marine ecosystems	
49	especia	lly in the	Mediterranean. Climate change has already affected the distribution of invasive species.	
50				
51	Climat	e models	project significant changes in rainfall in Europe, and increases in the frequency/intensity of	
52	extrem	e weathe	r events. Observed climate trends and future projections are broadly the same as in the previous	
53	assessm	nent. The	re is a clear indication that there will be a marked increase in many types of extremes, in particular	

1 heat waves, droughts and heavy precipitation. Changes in wind extremes are less clear. No changes in hail are 2 anticipated (low confidence). There will be strong regional differences in sub-regions in Europe. 3 4 Climate change has implications for the distribution of economic activity and welfare within European 5 region. Climate change will affect key economic sectors in Europe with a strong diversification across sub-regions 6 according to climate and institutional settings. There will be adverse affects of climate change on winter/ski tourism 7 although significant impacts are unlikely before 2050 for other tourism sectors. Changes in travel patterns from 8 southern to northern/central Europe are expected. Shifts in agriculture production across sub-regions may occur. 9 Climate change is likely to have impacts on food safety. 10 11 Adaptation is a trans-national and a cross-sectoral issue. More research is needed on adaptation options, 12 especially modal shifts, and the effects of adaptation in one sector on other sectors in Europe. Some evidence that 13 adaptation is already occurring in Europe, such as upstream/downstream links in large catchments, especially for 14 water resources. Policy makers are responding to the need to develop climate adaptation strategies. 15 16 There are important synergies and trade-offs between adaptation and mitigation. Adaptation measures for 17 housing – retrofitting, etc, are well described and have been evaluated in the context of other policy requirements, 18 especially energy efficiency (mitigation) and healthy housing. The main adaptation options to maintain winter 19 tourism (i.e. artificial snowmaking) are energy intensive. 20 21 Climate change has implications for infrastructure. Climate change is likely to affect rail, road and river 22 transport and have implications for economic sectors (e.g. delays associated with extreme weather events). Climate 23 change is unlikely to significantly affect transport safety, with very local exceptions (soil destabilization in high 24 mountains, coastal erosion). The impacts on transport will affect future adaptation options. Climate change will 25 decrease hydropower production from reductions in rainfall in all sub-regions, but only in parts of Scandinavia. 26 Impacts of climate change on wind energy are anticipated mainly after 2050, including increased opportunities for 27 wind energy in parts of southern Europe. Climate change may have serious adverse impacts on thermal power 28 production. Integrated analysis of water is needed because of competing demands with agriculture and other sectors. 29 30 Climate change is likely to affect energy demand. Climate warming will decrease space heating energy 31 consumption, but will significantly increase cooling energy consumption in urban areas. More efficient buildings 32 and demand-side management are main adaptation options, although passive cooling alone may be insufficient. 33 Increasing demand of bioenergy may have potential negative effects on food crop production and forest carbon sink 34 mitigation potential. 35 36 Climate change may have significant impacts on health and welfare, with some groups at particular risk. 37 Climate change will increase heat load in urban areas. There will be an increased risk of heat-related mortality and 38 morbidity unless adaptive actions are undertaken. Risks of emerging infections, including those transmitted by 39 arthropods, may be affected by climate change but other factors (travel, land use change) are more important in near 40 term. Climate change will affect cultural heritage, including iconic buildings and places. 41 42 Climate change is already affecting crop yields in Europe. The observed trend/stagnation in cereal yields is, in 43 part, due to observed climate change. Compared to AR4, the evidence no longer supports assessment that climate 44 change will cause a benefit [in cereal yields] at high latitudes, due to the high climate variability. Such benefits may 45 not become apparent until after mid-century. Plant and animal diseases-control will require more knowledge on 46 climate risks that need to be managed by adaptation measures. Need to preserve genetic diversity to help adaptation. 47 Adaptation of crops is needed especially in regions with water resources shortage. Irrigation is not enough to prevent 48 damage from heat waves to crops. System costs will increase under all climate scenarios. There are negative impacts 49 of warming on crops and livestock production that are independent of other factors. Climate change will influence 50 the occurrence, prevalence and severity of plant diseases. 51 52 Climate change will have negative impacts on forestry. There is new evidence of forest pests and diseases –

53 possible evidence of observed impacts due to recent warming. New developments in adaptation in forest

1 management and in tree plantation. Climate change is likely to increase the risk of wild fires (boreal and 2 Mediterranean). 3 4 It will be more difficult to maintain environmental quality and conservation of threatened species under 5 climate change. Climate change likely to affect air quality (specifically tropospheric ozone) and water quality. 6 Habitat of alpine plant will be significantly reduced and phenological mismatch is likely to constrain both terrestrial 7 and marine ecosystem functioning under climate change, with possible reduction in ecosystem services. 8 9 10 23.1. Introduction 11 12 This chapter reviews the scientific evidence published since AR4 on observed and projected impacts of 13 anthropogenic climate change in Europe. 14 15 The geographical scope of this chapter is the same as in AR4 with the inclusion of Turkey. Thus, the European 16 region includes all countries from Iceland in the west to Russia (west of the Urals) and the Caspian Sea in the east, 17 and from the northern shores of the Mediterranean and Black Seas and the Caucasus in the south to the Arctic Ocean 18 in the north. Polar issues are addressed in Chapter 28 and the Baltic Sea is addressed in the Open Oceans Chapter 19 30. 20 21 The European region has been divided into 5 sub-regions in order to describe intra-regional climate change 22 vulnerability (see Figure 23-1). This map is based on climate zones developed by Metzger et al. (2005), and 23 therefore the sub-regions are largely defined by geography and represent broad ecological zones. 24 25 **IINSERT FIGURE 23-1 HERE** 26 Figure 23-1: Sub-regions within Europe.] 27 28

29 23.1.1. Scope and Route Map of Chapter30

31 The chapter is structured around key policy areas. Sections 23.3 to 23.6 summarise the latest scientific evidence with 32 respect to specific sectors: production systems and physical infrastructure; agriculture, fisheries, forestry and 33 bioenergy production; health and social welfare and; the protection of environmental quality and biological 34 conservation. The second half of the chapter addresses cross-sectoral decision making. The chapter includes several 35 sections that were not in AR4. Because adaptation and mitigation policies are now in place in many countries in 36 Europe, a section on issue where there are significant conflicts and synergies between adaptation and mitigation 37 strategies is included (Section 23.9). The implications of climate change for the distribution of economic activity 38 within European region is discussed in Section 23.10. Section 23.7 synthesises the evidence for observed impacts 39 and responses to climate changed, including an assessment of whether adaptation is already occurring in Europe (for 40 more detailed discussions see Chapter 18).

41 42

43 23.1.2. Policy Frameworks

44

Since AR4, there have been significant changes in European countries in responses to climate change. Many countries now have policies in place on adaptation and mitigation. The dominant force for climate policy development in the region is the European Union. Most European Union Member States have mitigation targets, as well as the overall EU target, with both sectoral and regional aspects to the commitments. The policies are regionally differentiated with some countries allowed to stabilize or even increase their emissions, as long as others can abate more. EU targets on emissions reductions and the use of renewable energy are on track, however, the energy efficiency target is unlikely to be met.

52

Adaptation policies and practices have been implemented at the international, national and local levels. For example,
 in 2011, the Russian Federation approved a Climate Action Plan that includes both mitigation and adaptation

policies. Due to the vast range of policies, strategies and measures that cover a large range of policy areas (sectors), it is not possible to describe them extensively here. Box 23-1 provides a briefly overview of key national adaptation policies in the region. EU policy makers are currently developing an EU adaptation strategy to be implemented for 2014 to 2020.

____ START BOX 23-1 HERE

8 Box 23-1. Integrated Assessment of the Impact of the Russian 2010 Heat Wave and Wildfires

10 A blocking anti-cyclone brought extreme heat to the European part of the Russian Federation in 2010. Air

11 temperatures exceeded the long-term averages by more than 10°C (>4 standard deviations) (Barriopedro *et al.*,

12 2011). Moscow experienced temperatures as high as 38.2°C.

13 14 The heat wave was associated with forest fires over a 2800 km² area. The annual crop failure was estimated to be 15 25%. The economic loss associated with the heat wave was estimated to be USD 15 billion (1% of gross domestic 16 product) (cited in (Barriopedro et al., 2011). The fires and meteorological conditions caused high levels of outdoor 17 air pollution. Concentrations of CO and PM₁₀ were 30 mg/m³ and 1500 μ g/m³, respectively, and daily average PM₁₀ 18 levels varied between 431 and 906 μ g/m³ [WHO 2010]. It is estimated that the heat wave caused approximately 19 54,000 deaths in the Russian Federation (the excess relative to the same period in 2009). In Moscow, the estimate 20 impact on mortality was approximately 5,950 deaths from cardiovascular disease and 339 additional from 21 respiratory diseases (Revich and Shaposhnikov, 2010). An analysis of respiratory mortality revealed a three-fold 22 increase in deaths from asthmatic status among bronchial asthma patients (Zairatiants et al., 2011). 23

_____ END BOX 23-1 HERE _____

27 23.1.3. Conclusions from Previous Assessments

29 AR4 highlighted for the first time that a wide range of impacts from the climate change had already occurred in 30 Europe. A key conclusion of the assessment was that climate change is expected to magnify regional differences 31 within Europe for natural resources and assets (particularly for agriculture and forestry) driven by increases in water 32 stress over central and southern Europe (Alcamo et al., 2007). Most climate-related hazards were expected to 33 increase (with significant regional variations). Adaptation will be difficult for many species and ecosystems. 34 Adaptation was also expected to pose challenges to many European economic sectors because few governments had 35 systematically examined a comprehensive set of measures for adaptation. Uncertainties in climate impact 36 assessments were noted in association with uncertainties in climate impact models and with the fact that most impact 37 studies were conducted for separate sectors. Integrated approaches for both impact and adaptation (including the 38 associated costs and accounting for regional differences in adaptive capacity) were lacking.

39 40

5 6

7

9

24

25 26

28

41 **23.2** Current and Future Trends

43 23.2.1. Non-Climate Trends

44

42

45 Countries in the European region are diverse with respect to both demographic and economic trends. For the EU27 46 countries (Member states of the European Union), there is general increase in population, primarily due to net 47 immigration. Some countries, including the Russian Federation, have shown a decreasing population size since the 48 1990s. The ageing of the population is a significant trend in Europe, and Eurostat projections show an increase in the 49 old-age-dependency ratio up to 2050 in all countries. Migration pressure (into Europe) is increasing. Since AR4, 50 there has been a financial crisis, and economic growth has slowed (or stalled) in several countries in Europe. The 51 longer term implications of the financial crisis are unclear. Overall, there is some modification of the economic 52 outlook in Europe but other trends are broadly the same as described in the previous assessment.

53

1 Agriculture is the most dominant European land use, accounting for almost half of the total EU27 land area. Europe 2 is one of the world's largest and most productive suppliers of food and fibre. Rapid changes to farming systems in 3 the post-war decades allowed an unprecedented increase in agricultural productivity but also had a number of 4 negative impacts on ecological properties of agricultural systems, such as carbon sequestration, nutrient cycling, soil 5 structure and functioning, water purification, and pollination. Future trends in agricultural land use are uncertain. 6 Agriculture accounts for 22 % of total national freshwater abstraction in Europe as a whole and more than 80 % in 7 some southern Europe countries (EEA, 2010b). Limited water availability is already a significant problem in many 8 parts of Europe and the situation is likely to deteriorate further in future decades. Economic restructuring in some 9 eastern European countries has led to a decrease in water abstraction for irrigation, suggesting a potential for a future 10 increases in irrigated agriculture and water use efficiency (EEA, 2010b). Water allocation between upstream and 11 downstream countries is challenging in regions exposed to prolonged droughts like in the Euphrates-Tigris river 12 basin, where Turkey plans to more than double water demand by 2023 (EEA, 2010b). 13 14 Forested area in Europe accounts for approximately 35 % of land area (EEA, 2010b). The majority of forests are 15 now growing faster than in the early 20th century due to advances in forest management practices, genetic 16 improvement and, in central Europe, the cessation of site-degrading practices such as litter collection for fuel. It is 17 also very likely that increasing temperatures and CO₂ concentrations, nitrogen deposition, and reduction of air 18 pollution (SO_2) have had a positive effect on forest growth. The occurrence of forest fires in Europe is due mainly to 19 causes of an anthropogenic nature, the total burned area changes significantly from year to year largely because of 20 weather conditions (Lavalle et al., 2009b). 21 22 Soil degradation is already intense in parts of the Mediterranean and central-eastern Europe and, together with 23 prolonged drought periods and increased numbers of fires, is already contributing to an increased risk of 24 desertification. Projected risks for future desertification are the highest in the same areas (EEA-JRC-WHO, 2008). 25 26 Europe has relatively moderate urban sprawl levels. Urbanisation is projected to increase only in Eastern Europe, 27 with the magnitude of these increases depending on population growth, GDP growth and land use planning policy. 28 Other important environmental trends include improvements in outdoor air quality and declines in water quality 29 (eutrofication) in some areas (ELME project). 30 31 Long term projections (to the end of the century) will be described under the new "Shared Socio-economic 32 Pathway" scenarios (SSPs) (Kriegler et al., 2010). Other scenarios are also available for Europe (Mooij de and Tang, 33 2003)(Nicholls et al., 2008). Detailed national socio-economic scenarios have also been produced (e.g. Dutch WLO 34 2006).

35 36

38

37 23.2.2. Observed and Projected Climate Change

This section will be consistent with Chapter 21 (and WGI). For the part of projected climate change it largely depends on new findings from the global and regional simulations for CMPI5 and CORDEX, which are being carried out in 2011. The results will not be published before 2012.

42 43

44 23.2.2.1.Observed Climate Changes45

The average temperature for the European land area for the last decade (2001 - 2010) was 1.2 °C above the 1850 1899 average, and 1.0 °C for the combined land and ocean area. Considering the land area, 8 out of the last 13 years
were among the warmest years since 1850.

- 49
- 50 High-temperature extremes (hot days, tropical nights, and heat waves) have become more frequent, while low-
- 51 temperature extremes (cold spells, frost days) have become less frequent in Europe (EEA, 2011)(KNMI) based on
- 52 Climate Research Unit (CRU) gridded datasets HadCrut3 (land and ocean) and CruTemp3 (land only). In Eastern
- 53 Europe, including the European part of Russia, summer 2010 was exceptionally hot, with an amplitude and spatial

extent that exceeded the previous 2003 heat wave (Barriopedro *et al.*, 2011). These two heat waves revised the
 seasonal temperature records over approximately half of Europe.

3

Annual precipitation trends in the 20th century showed an increase in Northern Europe (10–40%) and a decrease in some parts of southern Europe (up to 20%) (EEA, 2008)(Del Rio *et al.*, 2011). At the scale of the continent, the winter snow cover extent presents a high variability, with a non significant negative tendency over the period 1967-2007(Henderson and Leathers, 2010). At the scale of the continent, the winter snow cover extent presents a high variability, with a non significant negative tendency over the period 1967-2007 (Henderson and Leathers, 2010).

9 10

11 12

14

Extreme sea levels in the past [cross ref SREX Chapters 3 and 4].

13 23.2.2.2. Projected Climate Changes

There is now more knowledge about the range of possible climates, including high levels of warming and more local information on climate change (high resolution output and downscaling). Although limits to climate projections are recognized, inter-model comparisons provide more robustness/confidence in the range of future climates. Climate impact assessment (and therefore adaptation planning) will increasingly rely on the range of temperature and rainfall changes rather a single average measure (ensemble mean). Overall, Europe is fortunate to have access to better climate projections for decision making than other regions.

21

22 Even under a climate warming limited to 2°C compared to pre-industrial times the climate of Europe is simulated to

depart significantly in the next decades from today's climate (Jacob and Podzun 2010, Ensembles final report).
 [Update awaiting CMPI5- CORDEX results].Models show significant agreement in warming all over Europe, with
 strongest warming in Southern Europe (Kjellström *et al.*, 2011)(Goddess et al., in ENSEMBLES Final Report). Less

26 warming in spring is projected, with the largest warming in the winter months.

Precipitation signal is regionally and seasonally very different (see Figure 23-2). Trends are less clear, but

Precipitation signal is regionally and seasonally very different (see Figure 23-2). Trends are less clear, but agreement in precipitation increase in Northern Europe and decrease in Southern Europe, the zone inbetween has

less clear sign of change (Kjellström *et al.*, 2011). Changes in annual cycle with decrease in precipitation in summer

31 months up to Southern Sweden. Decrease of long term mean snow pack, but still snow-rich winters possible

32 (Räisänen and Eklund, 2011). There is some evidence for changes in convection and hail storm activity in Europe.

33 Changes in circulation pattern and winds are less clear (e.g. (Beck *et al.*, 2007; Kjellström *et al.*, 2011; Rockel and

- 34 Woth, 2007)(Ulbrich *et al.*, 2009)(Pryor *et al.*, 2010).
- 35

36 [INSERT FIGURE 23-2 HERE

37 Figure 23-2: Horizontal maps of seasonal precipitation changes (%) covering all sub regions including robustness

38 measure (e.g. stippled for large number of model in trend agreement). [Notes: Figure under development. Further, if

not covered in Chapter 21, would generate a like graphic for temperature to include standard deviation as robustness
 measure.]

- 41
- 42

43 23.2.2.3. Projected Changes in Extremes

44

In Europe, as in many mid-latitude regions of the world, there will be a marked increase in many types of extremes,
in particular heat waves, droughts and heavy precipitation. Investigating the statistics of anomalously warm seasons
in a recent record, it is possible to quantify the increase in frequency of, for example, extremes such as the 2003
European heat wave (Schär and Jendritzky, 2004), or other anomalously warm seasons such as the winter of
2006/2007 or spring of 2007 in Europe (Beniston, 2009).

50

51 The future course of mid-latitude (winter) windstorms is less clear, as different causal mechanisms can enhance or

52 counteract the intensity and frequency of storms in a warmer climate (Goyette, 2011; Ulbrich *et al.*, 2009).

53

1 Some high-end estimates of extreme sea-level rise projections have been made for The Netherlands (Katsman *et al.*,

- 2 2011 (in press)), indicating that sea-level could rise globally between 0.55 and 1.15 m, and locally (The
- Netherlands) by 0.40 to 1.05 m. More on European regional sea-level projections to be added (e.g. (Slangen *et al.*,
 2011))
- 4 5
- 6 Storm surges: some model studies indicate increasing near-surface wind speeds over Europe (Pinto *et al.*, 2007a;
- 7 Pinto *et al.*, 2007b)(Donat *et al.*, 2010; Donat *et al.*, 2011; Pinto *et al.*, 2010; Schwierz *et al.*, 2010). Some studies
- 8 project increasing surge levels. Significant increases in wave height and storm surge levels are projected in northern
- 9 North Sea (Boldingh and Rÿed, 2008). Wang *et al.* (2008) show potential increases in the frequency of storm surges
- 10 around the coast of Ireland. Other studies however indicate little or no effect on extreme surge levels for the Adriatic
- Sea (Lionello *et al.*,) or the North Sea, even when sea-level rise is included (Sterl *et al.*, 2009).
- 13 [INSERT TABLE 23-1 HERE

Table 23-1: Changes in key parameters for all sub-regions and relevant sectors projected/expected changes including changes in extremes - if possible. Identification of possible range of changes. [forthcoming]]

16 17

19

21

18 23.3. Implications of Climate Change for Production Systems and Physical Infrastructure

20 23.3.1. Flood Risk

22 Europe has a high flood risk that threatens production systems and physical infrastructure (and people, see section 23 below), due to the presence of many highly urbanised areas in river basins and on coastlines. Past flood events have 24 lead to the highest share of economic losses from weather-related hazards in Europe, totalling more than 100 billion 25 Euros over the period 1980-2009 (EEA, 2010c), of which only about a third was insured. New studies since AR4 26 indicate that flooding remains a significant problem, despite increasing efforts aimed at protecting urban areas. A 27 major improvement is that many more studies now include estimates of potential future damages, resulting from a 28 combination of scenarios for the hazard (flood occurrence) and vulnerability (socioeconomic scenarios). Some 29 studies now also include indirect economic costs and non-market impacts.

- 30 31
- 32 Coastal flood risk
- 33

Coastal flooding is relatively rare in Europe. Surge from storm Xynthia caused breaching of dikes in France in 2010, leading to several deaths. Extreme sea-levels and floods are projected to increase in Europe [Section 23.2.2, SREX report, AR5 WG2 Chapter 5]. A widely applied model to assess future coastal impacts is the DIVA model (Vafeidis *et al.*, 2008). The model shows that impacts from seal level rise around Europe could reach a total cost of some 17 billion Euros per year by 2100 (without adaptation), but that adaptation can substantially reduce impacts (Hinkel *et al.*, 2010).

- 41 Studies on future local potential flood losses on the coast include estimates for the City of Copenhagen (Hallegatte
- 42 *et al.*, 2011), the UK coast (Mokrech *et al.*, 2008)(Purvis *et al.*, 2008)(Dawson *et al.*, 2009), the North Sea coast
- 43 (Gaslikova *et al.*, 2011), port cities including Amsterdam and Rotterdam (Hanson *et al.*, 2011), and The Netherlands
- 44 (Aerts *et al.*, 2008). One study specifically addressed future risk of loss of life due to flooding (Maaskant *et al.*,
- 2009). These studies indicate potentially substantial impacts, but that these can be avoided by coastal protection
 measures. [to be added: Baltic Sea example. Netherlands new Deltaplan]
- 47
- 48

49 *River flood risk*50

- 51 Research since AR4 shows some cases of increases in seasonal river discharges (Shiklomanov *et al.*, 2007) as well
- 52 as extreme discharges, notably in parts of Germany (Petrow *et al.*, 2009) (Petrow *et al.*, 2007), the Meuse river basin
- 53 (Tu *et al.*, 2005), parts of Central Europe (Villarini *et al.*, 2011), and Northwestern France (Renard *et al.*, 2008).
- 54 Other studies show decreases in extreme discharges, for example in the Czech Republic (Yiou *et al.*, 2006). This

1 differentiated pattern fits in wider scale analyses at the European level, that high variability of extreme discharges

2 driven by atmospheric circulation variations (Bouwer *et al.*, 2008), and some observed increases in extreme

discharges in some parts of Europe, as well as decreases, e.g. (Kundzewicz *et al.*, 2010a)(Kundzewicz *et al.*, 2010b)

4 [see also SREX report, AR5 WG2 Chapter 4]. One study has indicated that due to anthropogenic climate change the

- probability of an event similar to the summer 2000 flood in the UK has increased by between 20-90% (Pall *et al.*,
 2011).
- 7 8

9

10

11

12

13

New studies have become available since AR4 that analyse potential future impacts on the hydrology of river basins, and the occurrence of floods [SREX report, AR5 WG2 Chapter 4]. A Europe wide analysis of extreme discharges on the basis of GCM-hydrological model coupling indicates increases in the occurrence of extreme river discharges in west and parts of eastern Europe, but decreases in northeast, central and southern Europe (Dankers and Feyen, 2008). Recent studies on individual countries and basins indicate increases in occurrence of extreme discharges, to varying degrees, across many countries, including Finland (Veijalainen *et al.*, 2010), Denmark (Thodsen, 2007),

14 Ireland (Wang et al., 2006)(Steele-Dunne et al., 2008), the Rhine basin (Lenderink et al., 2007)(te Linde et al.,

15 2010), the Meuse basin (Leander et al., 2008); (Ward et al., 2011), the Danube basin (Dankers et al., 2007), and

- 16 French Mediterranean basins (Quintana-Segui et al., 2011).
- 17

2010)(Te Linde *et al.*, 2011). In particular, studies now quantify the important driver of increasing exposure to
 future flood risk (Feyen *et al.*, 2009)(Maaskant *et al.*, 2009)(Bouwer *et al.*, 2010)(Te Linde *et al.*, 2011). One study

has assessed the increase in potential damages from intense rainfall for the Netherlands (Hoes, 2006).

28

29 Some studies have assessed the effectiveness of structural measures, including flood protection (Bouwer *et al.*,

30 2010) and also non-structural or household level measures to reduce losses from river flooding (Botzen *et al.*,

2010a)(Dawson *et al.*, 2011). Although many flood protection plans are now implemented across Europe, some
 studies show that current plans may be insufficient to cope with increasing risks, for instance for the Rhine river

33 basin (te Linde *et al.*, 2010; Te Linde *et al.*, 2010).

- 34
- 35

36 Landslides37

Quantification of trends in landslides at the scale of Europe is difficult due to incomplete documentation of past events. Landslides are strongly connected to intense precipitations and the local conditions of slope stability. In mountains, glacier retreat and permafrost thawing tend to create favourable conditions. In the European Alps an apparent increase in large rock slides was documented by Fischer et al. (2011), while Jomelli et al. (2007) found a complex response to climate trends. Some land use practices changes during the 20th century lead to increased landslide hazards, counterbalancing favourable climate trends, as reported in Calabria (Polemio and Petrucci, 2010) and in the Apenines (Wasowski *et al.*, 2010).

45

Very few studies are available on the landslides evolutions during the 21th century, because of large uncertainties in extreme events projections and the importance of local factors (Crozier, 2010). There is a medium confidence in the fact that landslides that are related to glacier retreat and temperature will be affected by climate change. The evolution of precipitation driven phenomena such as shallow landslides is rather uncertain because of the difficulty to estimate local precipitation trends with accuracy and other factors such as land use. A study of the Mam Tor landslide in the UK indicated an increase in stability towards 2100 (Dixon and Brook, 2007).

- 52
- 53 54

23.3.2. Transport

1 2

Systematic and detailed knowledge on the effects of climate change on transport in Europe remains limited,
 sometimes ambiguous (both in terms of direction and magnitude) and uncertain (Koetse and Rietveld, 2009).

5 6

7

8

9

10

11

12

13

14

15

16

Studies of climate change and *road transport* have examined the effects on traffic safety and congestion. In line with AR4, an increase in precipitation frequency and duration is estimated to increase collisions but decrease their severity due to reduced speed (Brijs *et al.*, 2008)(Kilpeläinen and Summala, 2007)(Chung *et al.*, 2005). Regarding the effects of snow and ice, 12-43% less accidents as a result of fewer frost days under a future climate are estimated by Andersson and Chapman (Andersson and Chapman, 2011a), lowering the cost of salt usage, although there are indications that drivers may become more complacent when the risk of slippery roads is reduced (Andersson and Chapman, 2011a)(Brijs *et al.*, 2008) also found that the relationship between temperature and car crashes may be more complex. During evening peak hours and congestion in the Netherlands, a 7-12% lower traffic speed was found because of rain, causing an additional welfare loss of around $\in 0.50$ per commuting trip (Sabir *et al.*, 2010). Regarding direct damages, increased temperatures, excess and more frequent precipitation, storms and thawing of permafrost are likely to reduce the lifetime of roads and could increase infrastructure costs by 10-20% at 2080 even

17 under design adaptation (Larsen et al., 2008)(Carrera et al., 2010). In complex terrain, such as mountain forests,

18 forest functions are dependent on an adequate forest road network (Brang *et al.*, 2006)(Woltjer *et al.*, 2008).

19

20 For *rail*, insights remain limited. Lindgren et al. (Lindgren *et al.*, 2009) assessed in qualitative terms rail

21 vulnerability in Sweden. In line with AR4, increased buckling problems due to higher temperatures are estimated to

increase the average annual cost for heat-related delays in the UK (9.2 million £ in the baseline, excluding the cost

(Dobney *et al.*, 2009)(Dobney *et al.*, 2010). Effects of the same magnitude, but of the opposite sign, are expected for
 cold-related delays in the UK (costing 500 million £ in the baseline) due to milder winters. Efficient adaptation

25 cond-related delays in the OK (costing 500 minior 1 in the baseline) due to initider winters. Efficient adaptation 26 comprises proper maintenance of track and track bed and proper setting of the stress-free rail temperature. As for sea

20 comprises proper maintenance of track and track oed and proper setting of the stress-free ran temperature. As for set 27 level rise, under current defence levels the wave overtopping in UK coastal railway is estimated to increase by 50%

in the 2020s and more than 200% in the 2080s compared to 2006 (RSSB, 2008).

29

Regarding *inland waterways*, the navigability of important rivers (Rhine, Danube, and Elbe) is likely to be affected through changed water levels, while impacts are to a large extent transnational considering the geography of these waterways. In Rhine, high water levels in winter will occur more frequently, while in summer days with low water levels will probably increase (Te Linde, 2007). The need of transport blockage for safety reasons during future high water levels is not known (Krekt *et al.*, 2011). Low water levels imply restrictions on the load factor of inland ships, increasing transport prices. In the summer of 2003, a good proxy for future summers in the coming decades according to Beniston (2004), transport prices increased by more than 75% resulting in a welfare loss of about €90

37 million (compared to €28 million in a normal year) for a part of the Rhine market (Jonkeren *et al.*, 2007). Extending

this to the total Rhine market leads to a loss of \in 194-263 million (Jonkeren, 2009). Adaptation is possible through

39 modal shift, which could reach 2-8% of the annual cargo volume (Jonkeren *et al.*, 2009 (in press); Krekt *et al.*, 2011;

40 Krekt *et al.*, 2011), although this may create infrastructure capacity problems for rail and road transport. Increasing

the number of navigational hours per day in periods with low water levels is also found to be a cost efficient

42 measure (Krekt *et al.*, 2011). Using smaller ships is not an option since most ships of the current fleet of barges are

43 still considerably below the optimal size (Demirel, 2011). Ignoring environmental costs, which may be substantial,

adapting the waterway infrastructure itself (e.g. canalization of the downstream part of the river Rhine) has also been
 deemed to be economically profitable (Krekt *et al.*, 2011).

46

47 On *air transport*, estimates on climate change impacts are few. A study for London's Heathrow Airport (Pejovic *et* 48 *al.*, 2009) found that the net combined effect of on-site minimum temperature, wind speed, headwind-tailwind and

 $a_{1.2009}$ found that the net combined effect of on-site minimum temperature, wind speed, headwind-tailwind and $a_{1.2009}$ are sequence wind would result in an increase of weather related delays by up to 7% during winter in the 2050s, and in a

49 crosswind would result in an increase of weather-related delays by up to 7% during winter in the 2050s, and in a 50 decrease of 12-15% of summer delays. However, the overall increase of the annual cost of weather-related delays

50 decrease of 12-15% of summer delays. However, the overall increase of the annual cost of weather-related delays

51 would be small. The first findings of a EUROCONTROL commissioned set of impact studies indicate major shifts 52 in tourist demand after 2030 in the Mediterranean, increased vulnerability of several European airports to sea level

in tourist demand after 2030 in the Mediterranean, increased vulnerability of several European airports to sea level
 rise, storm surges and flooding by 2100, and reduced performance due to storminess for the period 2020-2050

54 (Burbidge *et al.*, 2010).

23.3.3. Energy Production

1 2 3

4 5 On wind energy, recent studies conclude that no significant changes in wind resources are expected before 2050 6 (Pryor et al., 2006)(Pryor and Schoof, 2010). Afterwards, in line with AR4, sites in Northern, Continental and to 7 some extent Atlantic Europe may experience a small (<10-15%) increase in energy density during winter and a 8 decrease in summer (Pryor et al., 2005)(Harrison et al., 2008). In the Mediterranean, the energy density may 9 decrease during winter, while in summer and spring estimations are uncertain and diverse, with potential increases 10 in some areas (e.g. Aegean Sea) and decreases in others such as southern France and the Tyrrhenian Sea (Rockel and 11 Woth, 2007)(Bloom et al., 2008)(Najac et al., 2011). The inter-annual variability of energy density may increase, at 12 least in some locations in the north (Pryor et al., 2006)(Pryor and Barthelmie, 2010). As for extreme wind speeds 13 and gusts, although some evidence exists for increased magnitude of extremes in Northern and Continental Europe 14 for the period 2071-2100 (Makkonen et al., 2007)(Rockel and Woth, 2007)(Grabemann and Weisse, 15 2008)(Leckebusch et al., 2008)(Leckebusch et al., 2007)(Pinto et al., 2010)(Pinto et al., 2007a; Pinto et al., 2007b), 16 extreme wind direction changes and the overall effect of extremes on wind farms' operation and maintenance 17 remain unknown (Pryor and Barthelmie, 2010). New areas in Alpine and Northern Europe, especially at the coastal 18 area of the Baltic Sea, may become suitable for wind energy development due to significantly less frequent icing 19 events under a future climate (Clausen et al., 2007). 20 For hydropower, most studies since AR4 examine the hydrological response at the basin scale rather than impacts on 21 22 socio-economic activities, especially within an integrated framework incorporating competing water uses. For the 23 vulnerable area of Swiss Alps (Beniston, 2011), Schaefli et al. (2007) estimate a 36% lower production of a 24 reservoir plant by 2070-2099 for +3.4°C mean daily temperature and 88% increase of evapotranspiration due to 25 severely reduced glaciation. For the Upper Danube, feeding around 140 run-off and reservoir plants, a decrease by 26 46% of the annual low flow by 2060 is expected for the SRES A1B scenario (Mauser and Bach, 2009). In Austria, a 27 reduced hydropower production by 6-15% is estimated for the period 2025-2075 (Stanzel and Nachtnebel, 2010). In 28 Northern Greece, the operational risk of production stoppage of a reservoir plant may increase from a current range of 0-30% (for an annual production range of 180 to 420 GWh) to 0-54% by 2050 (Baltas and Karaliolidou, 2010). 29 30 Improved water management stands as the main adaptation option (Schaefli et al., 2007)(García-Ruiz et al., 2011). 31 32 Biofuel production is covered in section 23.4.6. No literature on climate change impacts on solar energy productions 33 was found (since AR4).

34

35 Warmer than average summers in 2003-2006 and 2009 resulted at reductions/ interruption of production in several 36 nuclear plants in because of cooling water shortages and limitations in discharging cooling water (Kopytko and 37 Perkins, 2011) (Rübbelke and Vögele, 2010). In agreement with AR4, Linnerud et al. (2011) estimated that on the 38 basis of actual data from various European plants, a 1 °C rise in ambient temperatures above 20 °C will reduce 39 output by more than 2% because of loss of load. Förster and Lilliestam (2010) calculated load reductions of 1.6-40 11.8% for a typical plant in Continental Europe under a future climate, leading to average annual income losses of 41 up to 80-111 million €. Closed-cooling circuits are an efficient adaptation option (Gañán et al., 2005)(Koch and 42 Vögele, 2009) but are usually feasible only for new plants. The increased risk of premises' flooding as a result of 43 storm events is also considered important and is being assessed by European utilities (ASN, 2008). As for impacts 44 on transmission losses, estimates are scant and qualitative (Mideksa and Kallbekken, 2010). 45

- 46 Climate change impacts on energy use is now included under the section on Housing, Urban Climates, Planning47 (23.3.6).
- 48

49

50 **23.3.4.** Tourism 51

- 52 Since AR4, a significant amount of research has been carried out on the effects of climate change on tourism in
- 53 Europe. Most studies continue to assess climatic comfort in European destinations utilizing the Tourism Climate
- 54 Index (TCI), either in its original form or modified in order to use daily values or to adapt to specific activities such

1 as beach tourism (Moreno and Amelung, 2009)(Amelung and Moreno, 2009)(Hein *et al.*, 2009) (Perch-Nielsen *et*

2 *al.*, 2010)(Amelung *et al.*, 2007b)(Nicholls and Amelung, 2008). New approaches combining meteorological and

3 tourism related components have also been developed (Matzarakis, 2007)(Endler *et al.*, 2011). Tourists' preferences

4 have also been explored through empirical studies using questionnaires (De Freitas *et al.*, 2007)(Rutty and Scott,

- 5 2010)(Moreno, 2010)(Denstadli *et al.*, 2011 (in press)) or techniques such as webcam technologies (Moreno and Amelung, 2009; Moreno *et al.*, 2009).
- 7

8 In line with AR4, index-based studies show that in Northern Europe and in northern areas of the Atlantic and 9 Continental Europe, in particular at the North Sea and Baltic Sea coastline, climate conditions for tourism after 2050 10 and especially after 2070 are expected to improve remarkably during summer and to a smaller extent during autumn 11 and spring (Amelung and Viner, 2006)(Amelung and Moreno, 2009)(Amelung et al., 2007a; Amelung et al., 12 2007b); (Nicholls and Amelung, 2008). Sea water temperature is estimated to increase in at least some areas of the 13 Baltic, lengthening the swimming season by 25% and 60% in 2050 and 2100 respectively (Matzarakis and Tinz, 14 2008). For the Mediterranean, most studies estimate that climatic conditions for light outdoor tourist activities will 15 deteriorate significantly in many destinations during summer mainly after 2050 and will improve during spring and 16 autumn (Amelung and Viner, 2006)(Amelung and Moreno, 2009)(Hein et al., 2009) (Perch-Nielsen et al., 17 2010)(Amelung et al., 2007a; Amelung et al., 2007b); (Nicholls and Amelung, 2008). However, especially for 18 beach tourism, recent studies that exploited also empirical techniques on assessing climatic comfort found no 19 evidence that the Mediterranean as a whole will become exceedingly hot before 2030 or even 2060 (Moreno and 20 Amelung, 2009)(Rutty and Scott, 2010). Interestingly, the analysis of actual visitation data and questionnaires 21 indicate that high beach visitation levels are associated with high temperatures, while precipitation plays a 22 determinant role for summer tourism (De Freitas et al., 2007)(Moreno, 2010)(Moreno and Amelung, 2009). The level of climate comfort felt by tourists has been found to be affected also by tourists' weather expectations prior to 23 24 the trip, as well as by their country of origin (Eugenio-Martin and Campos-Soria, 2010)(Denstadli et al., 2011 (in

- press)). The determination of climate comfort in tourism is identified by many authors as a main area for furtherresearch.
- 27

28 Tourist arrivals at destinations also depend on parameters other than changes in climate comfort, including 29 economic and environmental conditions, population and the capacity of tourist infrastructure (Hamilton and Tol.

2007)(Moreno and Amelung, 2009; Perch-Nielsen *et al.*, 2010). Significant knowledge gaps exist on the effects of

31 increased water stress at destinations under a future climate. Global simulation models incorporating some of these

32 parameters found that in large European countries with a non-uniform warming pattern, the general south-to-north

33 shift of tourist demand may not hold (Hamilton and Tol, 2007).

34

35 Regarding ski tourism, in agreement with AR4, climate change affects snow reliability and consequently the ski

36 season's length. In the Alps, by using the 100-day rule (Witmer, 1986), 69% of Alpine ski areas in Germany, 87% in

- Austria, 93% in Italy and 97% in France and Switzerland can be considered as naturally snow-reliable under present
- climate (OECD, 2007). Still, Alpine ski areas have already experienced significant demand losses during the past
- 39 three decades, while in the record warm season 2006/2007 some ski areas were not able to offer a continuous season
- 40 from December to April despite being equipped with artificial snowmaking (Steiger, 2011)(Steiger, 2010b). In a +2
- ⁴¹ °C scenario, snow reliability in the Alps is expected to fall to 61% (OECD, 2007). Low-lying ski areas are most
- 42 vulnerable (Falk, 2010; Serquet and Rebetez, 2011; Uhlmann *et al.*, 2009), as in the Black Forest area in Germany
- 43 where a 40% reduction of skiing season is expected (Endler and Matzarakis, 2011; Endler *et al.*, 2011). Artificial
- snowmaking, although still the main adaptation option (Hoy *et al.*, 2010 (in press); OECD, 2007)(Wolfsegger *et al.*,
- 2008), has physical and economic limitations, especially in small and medium sized ski stations (Schönbein and
 Schneider, 2005)(OECD, 2007; Sauter *et al.*, 2010)(Schneider and Schönbein, 2006)(Schneider *et al.*, 2006)(Steiger,
- 47 2010a; Steiger, 2010b), and increases water consumption. Other options may include shift to higher altitudes,
- 48 operational changes, use of weather derivatives (Bank and Wiesner, 2011; OECD, 2007) and provision of non-snow
- 49 offers which however cannot replace entirely snow-related activities (OECD, 2007).
- 50
- 51 Mountainous areas though offer tourist activities beyond winter skiing. Low-lying regions in the Alpine and
- 52 Continental Europe are expected to experience improved climatic conditions for summer tourism (Endler and
- 53 Matzarakis, 2011; Endler *et al.*, 2011; Perch-Nielsen *et al.*, 2010; Serquet and Rebetez, 2011). However,
- 54 infrastructure capacity remains an important parameter to be considered.

2 3 4

1

23.3.5. Industry and Manufacturing

5 Available literature on the way climate change affects industrial sectors is scant. Several studies examine the 6 impacts on crops used as inputs by the agro-food and beverage industry, the assessment is not extended to the 7 industrial production chain by considering also alternative/ complementary supplies and non-climatic factors 8 (Holland and Smit, 2010). Wine production is more studied than other sectors; risks and opportunities have been 9 associated to different regions and cultivars, while some adaptation measures (e.g. changes in management 10 practices, relocation) are already in place (Battaglini et al., 2009; Duarte Alonso and O'Neill, 2011; Holland and 11 Smit, 2010; Malheiro et al., 2010; Moriondo et al., 2010a; Santos et al., 2011). Significant gaps of knowledge exist 12 on indirect impacts (i.e. on supply chains, utilities and transport infrastructure utilized by industries), which affect 13 resilience to climatic changes and in particular extreme weather events (Beermann, 2011; Wedawatta et al., 2010). 14 Noteworthy, climate change impacts may also extend to the distribution chains of manufactured food products by 15 altering the products' quality (Jacxsens et al., 2010; Popov Janevska et al., 2010), highlighting implications with 16 food waste and sustainability in food chains. Small-and-medium scale enterprises are considered to be particularly 17 vulnerable to climate change (Crichton, 2006).

18 19

21

20 23.3.6. Housing, Urban Climates, Planning

22 The impact of climate change on the outdoor environment, particularly, its interactions with urban heat islands, 23 indicates that urban areas will have an increased heat load. Effects of climate change on local urban environment 24 (e.g. air quality, pluvial flood risks) are less clear.

25

26 Energy use for domestic space heating under a +3.7 °C scenario by the end of the century is expected to decrease by 27 3% in Russia and by 25% in Continental and part of the Atlantic Europe in 2000-2050, remaining practically stable 28 at the rest of Europe, while decreases of 18-43% are expected for 2050-2100 (Isaac and van Vuuren, 2009). As for 29 cooling, the same authors estimate an increase by 260% in Continental and part of the Atlantic Europe during 2000-2050 and by more than 4000% in Russia and the rest of Europe. After that, the increase relative to 2050 values falls 30 31 to 74%-118%. Changes of a similar order of magnitude were estimated for Slovenia (Dolinar et al., 2010). In the 32 Mediterranean, cooling degree days by 2060 will increase throughout the region, while heating degree days will 33 decrease but with substantial spatial variations (Giannakopoulos et al., 2009). For Greece, electricity consumption for cooling during summer is expected to increase by 28-128% for the SRES A2 and B2, leading to an additional net 34 35 annual generation cost of 170-770 million € (Mirasgedis et al., 2007). Zachariadis (2010) estimated this additional 36 cost at 239 million \in for Cyprus by 2030 and for a +1 °C scenario. Passive-cooling alone seems not to be enough, 37 while energy increases can be mitigated and even offset (in some cases) by using more efficient buildings and 38 cooling systems, as well as demand-side management (Artmann et al., 2008; Breesch and Janssens, 2010; Chow and 39 Levermore, 2010; Day et al., 2009; Jenkins et al., 2008).

40

41 Annual total electricity consumption would increase by 3-10% in the Mediterranean (except Portugal) and decrease 42 by 3-21% in the rest EU member states if the present climate were as in SRES A1B (Eskeland and Mideksa, 2010). 43 Mirasgedis et al. (2007) estimated a net increase by 3-6% (but with a large seasonal variation) for Greece by 2071-44 2100 and for the SRES A2 and B2, while Pilli-Sihlova et al. (2010) obtained lower figures (-0.4-1.3%) for Finland, 45 Germany and France, and +0.6-1% in Spain by 2050 for the SRES A2, A1B and B1.

46 47

49

48 23.3.7. Insurance and Banking

50 The financial sector has a large base in Europe, and its activities are potentially affected by climate change. First, the 51 insurance sector is potentially affected by increasing losses from extreme weather, through problems with accurate

pricing of insurance, shortage of capital after large loss events, and by an increasing burden of losses from natural 52

- 53 disasters that can affect markets and insurability, within but also outside the European region (Botzen et al., 2010a;
- 54 Botzen et al., 2010b; CEA, 2007)(Botzen et al., 2010a)(IPCC SREX). On the other hand, insurance is also

recognised as a means to cover and reduce losses from extreme weather (Botzen and van den Bergh, 2008; CEA,
 2009).

3

4 Most important to the insurance sector are storm losses that are generally well covered in Europe by building and 5 motor policies. New studies have become available since AR4 that have coupled GCMs to damage models. All of 6 these studies indicate an overall increase in future storm risk in Europe, but the uncertainties are large, and some 7 regions may see decreases in risks (Donat et al., 2011; Leckebusch et al., 2007; Narita et al., 2010; Pinto et al., 8 2007a; Pinto et al., 2007b; Schwierz et al., 2010). There is no increase in historic European storm damages due to 9 anthropogenic climate change, but increasing exposure is a major driver at present (Barredo, 2010). One study 10 indicates a possible increase in economic losses from storm surges on the North Sea (Gaslikova et al., 2011). Other 11 losses of concern to the insurance industry are building subsidence losses related to drought, which may have been 12 increasing in France (Corti et al., 2009), and a possible increase in future hailstorm losses in the Netherlands

- 13 (Botzen *et al.*, 2010b).
- 14

As discussed in the AR4 (Alcamo *et al.*, 2007), the financial sector has a number of approaches in dealing with increasing risks due to climate change, including adjustment of premiums, restricting or reduction of coverage,

increasing risks due to climate change, including adjustment of premiums, restricting or reduction of coverage,
 further risk spreading, and risk reduction. Although private sector activities can incentivise risk reduction, studies

17 Iurther risk spreading, and risk reduction. Although private sector activities can incentivise risk reduction, studies

18 indicate that some government intervention is needed (such national insurance schemes, provision of compensation)

19 (Aakre and Rübbelke, 2010; Aakre *et al.*, 2010)(Aakre and Rübbelke, 2010). Hochrainer et al (2010) discuss options

- 20 to improve the EU Solidarity Fund system, in particular, to incentivise risk reduction.
- 22

24

23 23.4. Implications of Climate Change for Agriculture, Fisheries, Forestry, and Bioenergy Production

25 Terrestrial ecosystems provide a number of vital services for people and society, such as biodiversity, food, fibre, 26 water resources, carbon sequestration and recreation (Metzger et al., 2006). Trends in use and status of ecosystem 27 services in Europe assessed by a systematic review of the literature shows increases in demand of services for crops 28 from agro-ecosystems, timber from forests, water flow regulation from rivers, wetlands and mountains, and 29 recreation and ecotourism in most ecosystems, but decreases in services from livestock production, freshwater 30 capture fisheries, wild foods and virtually all services associated with ecosystems which have considerably 31 decreased in area (e.g. semi-natural grasslands) (Stoate et al., 2009)(Harrison et al., 2010). Under all scenarios, 32 appropriate agricultural management practices are critical to realizing the benefits of ecosystem services and 33 reducing disservices from agricultural activities (Power, 2010). Despite many adjustments to agricultural policy, 34 intensification of production in some regions and concurrent abandonment in others remain the major threat to the 35 ecology of agro-ecosystems impairing the state of soil, water and air and reducing biological diversity in agricultural 36 landscapes (Stoate et al., 2009).

37

38

39 23.4.1. Food and Fibre Production

40

40 In 2008, Europe accounted for 19% of global meat production and 20% of global cereal production (*FAOSTATS*).

42 Current trends show an intensification of agriculture in northern and Western Europe and decline and abandonment
 42 Current trends show an intensification of agriculture in northern and Western Europe and decline and abandonment

in some parts of the Mediterranean and south-eastern regions of Europe (Stoate *et al.*, 2009). Many animal
 production systems are increasing their efficiency and environmental sustainability (Thornton, 2010). AR4 reported

45 that crop suitability is likely to change throughout Europe, and crop productivity (all other factors remaining

46 unchanged) is likely to increase in Northern Europe, and decrease along the Mediterranean and in South-eastern

- 47 Europe.
- 48

49 Crop and pasture production is inherently sensitive to variability in climate. The last two decades are witnessing a

50 decline in the growth trend of cereal yields in many European countries (Olesen *et al.*, 2011). For instance, in

51 France, genetic progress was partly counteracted, from 1990 on, by heat stress during grain filling and drought

52 during stem elongation (Brisson *et al.*, 2010). This is consistent with statistical modelling showing that cereal yields

- have been negatively affected by warming in Europe since 1980, e.g. in France by -5% for wheat and -4% for maize
- 54 (Lobell *et al.*, 2011). The climatic risk for corn and wheat production has increased between 1951 and 1990 in some

1 Hungarian regions (Ladanyi, 2008). In the northernmost agricultural areas of Europe, severity of overwintering

2 damage, and associated cereal yield penalties, fluctuate considerably on a year-to-year basis and no consistent

reduction in yield variability was recorded (Peltonen-Sainio *al.*, 2010). Grassland productivity has increased in
 recent decades in Europe, but the average annual gain is greater in temporary (0.5%) than in permanent grassland

(0.25%) and is less than the genetic gain (+3.5\%) reported for forage species (Smit *et al.*, 2008).

6

7 Climate change impacts on the European agricultural ecosystems are likely to vary widely. In northern Europe, 8 increases in yield and expansion of climatically suitable areas are expected to dominate, whereas disadvantages from 9 increases in water shortage and extreme weather events (heat, drought, storms) will dominate in southern Europe 10 (Bindi and Olesen, 2011). In the southern Mediterranean, the likelihood of crop failure would rise sharply to more 11 than 60%, and even in wet years, yields are likely to decrease under climate change in elevated spots (Ferrara et al., 12 2010). Although in the UK for the 2050s, wheat will mature earlier in a warmer climate and avoid severe summer 13 drought, the probability of heat stress around flowering that might result in considerable yield losses is predicted to 14 increase significantly (Semenov, 2009). In the northernmost agricultural areas of Europe, climate change is 15 projected to result in milder winters, which may enable cultivation of winter crops to a greater extent. However, 16 fluctuating conditions that currently hamper wheat overwintering, may be exacerbated in the future by increased 17 climatic variability and extreme weather events (Peltonen-Sainio et al., 2010). This could delay the adoption of 18 winter-sown crops (cereals and rapeseed) for many decades. Nevertheless, spring crops from tropical origin like 19 maize for silage could become cultivated in Finland by the end of this century despite a higher base temperature 20 requirement (Peltonen-Sainio et al., 2009). Climate change is also projected to have a significant effect on European 21 viticultural geography. Detrimental impacts on winegrowing are predicted in southern Europe, mainly due to 22 increased dryness and cumulative thermal effects during the growing season. Conversely, in western and central 23 Europe, projected future changes will benefit not only wine quality, but might also demarcate new potential areas for

24 viticulture, despite some likely threats associated with diseases (Malheiro *et al.*, 2010). (*Note: more on fruit trees*

25 and ozone is needed)

26 27 Climate change will probably influence the occurrence, prevalence and severity of plant diseases (Kersebaum et al., 28 2008). Pathogenic fungi like fruit rots and cereal rots react differentially to climate change due to their complex 29 infection biology. With fruit trees the appearance of a black rot fungus in Northwestern Europe is best explained by rising temperatures during the vegetation period, but this does not hold for other fruit rot species (Weber, 2009). 30 31 With cereals, some pathogens like stem rot (e.g. Puccinia striiformis) will be limited by increasing temperatures. 32 Nevertheless, earlier wheat anthesis dates and increasing atmospheric CO_2 may condition the extension of *Fusarium* 33 ear blight (Luck et al., 2011) and lead to more severe blight epidemics in southern England by the 2050s (Madgwick 34 et al., 2011). Under future climate conditions, there is a risk that the European corn borer (Ostrinia nubilalis) 35 establishes permanent populations in Central Europe extending the climate niche to cover almost the entire area 36 suitable for agriculture by 2040-2075 (Trnka et al., 2007). Cold winters and geographic isolation have hitherto 37 protected the Nordic countries from many plant pathogens and insect pests, leading to a comparatively low input of 38 pesticides. The changing climate is projected to lead to a greater rise in temperature in this region, compared to the 39 global mean leading to opportunities for crop pests and pathogens, including new types of viruses and virus vectors 40 to thrive in the absence of long cold periods (Hakala et al., 2011; Roos et al., 2011). A combination of climate 41 scenarios and crop models predicted that climate change will increase yield of fungicide-treated oilseed rape crops 42 in Scotland by up to 15%, but would increase yield losses from phoma stem canker epidemics to up to 50 per cent in 43 South England and greatly decrease yield of untreated winter oilseed rape (Butterworth et al., 2010). Insight into the 44 potential effect of climate change on any particular species or crop system requires the combination of a wide range 45 of emission scenarios, GCMs and impact studies (Trnka et al., 2007)(Soussana et al., 2010).

46

47 Farmers across Europe are currently adapting to climate change. Simple, no-cost adaptation options such as

48 advancement of sowing dates or the use of longer cycle varieties may be implemented to tackle the expected yield

49 loss in southern Europe as well as to exploit possible advantages in northern regions (Moriondo *et al.*, 2010a;

50 Moriondo *et al.*, 2010b). Local agricultural experts show a surprisingly high proportion of negative expectations

- 51 concerning the impacts of climate change on crops and crop production throughout Europe, even in the cool
- 52 temperate northern European countries (Olesen *et al.*, 2011). Among the adaptation options include: changes in crop
- 53 species, cultivar, sowing date, fertilization, irrigation, drainage, land allocation and farming system (Bindi and
- 54 Olesen, 2011). Disease management will also be affected with regard to timing, preference and efficacy of chemical,

1 physical and biological measures of control and their utilization within integrated pest management strategies

2 (Kersebaum *et al.*, 2008). More efficient surveillance and control tools as well as coordinated regional monitoring

and control programmes are needed for both plant and animal pests and diseases (Chevalier *et al.*, 2010). The
 options available may, however, be limited by a lack of basic entomological data and limited epidemiological

5 surveillance (Wilson and Mellor, 2009).

6

7 Achieving increased adaptation action will necessitate integration of climate change-related issues with other risk 8 factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. 9 Adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, 10 and policymakers will be needed (Howden et al., 2007), as well as new investments in adaptive management and 11 technology (Knox et al., 2010). The development of insurances against weather-related yield variations and the use 12 of weather derivatives to safeguard against volumetric risks by using precipitation options (Musshoff et al., 2011) 13 may be a tool to reduce risk aversion by farmers. Adaptive capacity to variable and changing conditions is largely 14 attributable to the characteristics of farm types (Reidsma et al., 2009). By combining ecological and economic 15 optimisation models at farm scale(Moriondo et al., 2010c) the economic viability and the long term sustainability of 16 farming systems in future scenarios may be approached. Preserving genetic resources is a precondition for crop 17 adaptation to changing environments (Jump et al. 2009). Climate change alters breeding targets. Increasing emphasis 18 needs to be placed on the identification of the most CO_2 -responsive genotypes (Ainsworth *et al.*, 2008) and of heat, 19 drought- and salinity-tolerant genotypes (Tester and Langridge, 2010) in order to provide starting lines for breeding 20 programmes. In the same way, the option value provided by animal genetic diversity needs to be secured. Both for 21 cultivated plants and domesticated animals improved mechanisms to monitor and respond to threats to genetic 22 diversity; more effective in situ and ex situ conservation measures are required as well as genetic improvement 23 programmes targeting adaptive traits in high-output and performance locally adapted seeds and breeds (Hoffmann 24 2010).

25 26

27 23.4.2. Water for Agriculture 28

29 Drought is a prominent limiting factor for agriculture at the scale of Europe, not only in the dryer zones, but also in mountain areas and wet zones in northern Europe. High frequency of rainy conditions complicates soil workability, 30 31 sowing and harvest across most of the north-western zones, while flooding and stagnant surface water in agricultural 32 fields is a persistent problem in parts of Central Europe (i.e. Hungary, Serbia, Bulgaria and Romania) (Olesen et al., 33 2011). In Mediterranean countries cereal yields are limited by water availability, heat stress and the short duration of 34 the grain-filling period. The 2004/2005 hydrological year was characterised by an intense drought throughout the 35 Iberian Peninsula and cereals production fell on average by 40 % (EEA, 2010b). The decline in maize yield and 36 production during the 2003 heat wave and associated drought in France was only partly minimized by irrigation. 37 Areas without irrigation infrastructure experienced high irrigation requirements during the extreme heat and drought 38 conditions in 2003 (van et al., 2010).

39

40 Changes in climate, agricultural ecosystems and hydrometeorology depend on complex interactions between the 41 atmosphere, biosphere and hydrological cycle and there is a need for more integrated approaches to climate impacts 42 assessments (Falloon and Betts, 2010). Future projected trends in European agriculture may be accompanied by a 43 widening of water resource differences between the North and South, and an increase in extreme rainfall events and 44 droughts. Changes in future hydrology and water management practices will influence agricultural adaptation 45 measures and alter the effectiveness of agricultural mitigation strategies (Falloon and Betts, 2010). Under 46 economically focussed regional futures, water supply availability increases at the expense of the environment. Under 47 environmentally focussed futures, irrigation demand restrictions are imposed. The effectiveness of water pricing for 48 reducing irrigation demand is less in a global market-drive future, where irrigation demand is shown to be sensitive 49 to the price of agricultural commodities (Henriques et al., 2008). More bioenergy production may result in more 50 water stress in some river basins and regions, in particular in southern Europe and during dry summers (Dworak et 51 al., 2009). Even though the adoption of irrigation leads to higher and less variable crop (e.g. maize) yields in the 52 future, economic benefits of this adoption decision are expected to be rather small. Thus, no adoption is expected in 53 the future in countries like Switzerland, without changes in institutional and market conditions (Finger et al., 2011). 54 Changes in agricultural intensity will have feedbacks on water quality. In Northern Europe, negative impacts on

quality (Ducharne et al., 2007).

1 water quality are expected due to the intensification of agriculture (Bindi and Olesen, 2010). In the Seine river basin,

even with reduced N fertilizer application, increased yields and reduced growing cycles may lead to riverine and
 groundwater nitrate concentrations increase during the 21st century that would however not degrade severely water

4 5

6 For Northern Europe, agricultural adaptation may be shaped by increased water supply and flood hazards. Summer 7 irrigation shortages may result from earlier spring runoff peaks leading to increased irrigation demand for instance in England and Ireland (Henriques et al., 2008)(Holden and Brereton, 2006). The need for effective adaptation will 8 9 be greatest in Southern and south-eastern regions which already suffer most from water stress, as a result of 10 increased production vulnerability, reduced water supply and increased demands for irrigation (Trnka et al., 2009). 11 In the Guadalquivir river basin in Spain a significant increase in aridity and an increase of 15-20 % in seasonal 12 irrigation need by the 2050s was highlighted (EEA, 2010b). An increase of the role of irrigation may, however, not 13 be a viable option because of the reduction in total runoff in the Mediterranean area (Olesen et al., 2011). Increasing 14 flood and drought risks will further contribute to the need for robust management practices and adaptation strategies 15 to cope with changes in future water reliability (Falloon and Betts, 2010). Earlier sowing dates may allow earlier 16 irrigation and a reduction of the water application (Gonzalez-Camacho et al., 2008). An increased soil organic 17 matter content through farming practices like organic farming may facilitate better soil water retention during 18 drought and enhance infiltration capacities (Lee et al., 2008). Areas with poor water-holding soils could be managed 19 extensively for groundwater recharge harvesting, while better water-holding soils could be used for high input grain 20 production (Wessolek and Asseng, 2006). Climate change could increase the number of failures for current 21 irrigation systems up to 54-60%. System costs would increase by 20-27% when designed according to the future 22 irrigation demand (Daccache and Lamaddalena, 2010). To sustain productive irrigated agriculture with limited water 23 resources requires high water use efficiency. Alternative options such as the use of low-energy systems, improving 24 irrigation efficiency, switching to deficit irrigation and changing cropping patterns can be used as adaptation 25 pathways (Daccache and Lamaddalena, 2010). This can be achieved by the precise scheduling of deficit irrigation 26 systems taking into account the crops' response to water stress at different stages of plant growth (Schutze and Schmitz, 2010).

27 28 29

31

30 23.4.3. Livestock Production

Livestock production may be impacted by climate change both directly through changes in animal voluntary intake and indirectly through changes in the amount, timing and quality of forage production (Tubiello *et al.*,

34 2007)(Soussana and Luscher, 2007). Grassland vegetation was highly resistant to experimental heating and water

35 manipulation maintained over 13 yr in Northern England (Grime *et al.*, 2008). However, grassland production was

36 significantly reduced by five years warming, elevated CO₂ and drought application in an extensive upland pasture in 37 France (*Cantarel et al., Ecosystems, submitted*). In response to drought, a potential increase of weed pressure by tap

rooted forbes (e.g. *Rumex obtusifolius*) may occur under future climatic conditions, demanding additional

management measures to limit their success (Gilgen *et al.*, 2010). Significant reductions in summer-autumn milk

40 production, in annual water drainage and in herbage protein content would occur by the end of the century in dairy

41 systems in France, together with new opportunities for herbage production in early spring and in winter especially

42 (*Graux et al., submitted*). In Central Europe, dairy-oriented agriculture (based on permanent grassland production)

43 could suffer through increased evapotranspiration demand combined with a decrease in precipitation, leading to

44 higher water deficits and yield variations (Trnka *et al.*, 2009).

45

46 The spread bluetongue virus (BTV) in sheep across Europe has been attributed to climate warming (Arzt *et al.*,

47 2010). The spread of the disease was caused by the expansion of distribution of major vector, *Culicoides imicola*,

- 48 and also the involvement of novel *Culicoides* vector(s) (Wilson and Mellor, 2009). The probability of introduction
- 49 and large-scale spread of Rift Valley Fever in Europe is very low (Chevalier *et al.*, 2010). There is some evidence
- 50 that climate change, especially elevated temperature, has changed the overall abundance, seasonality and spatial
- 51 spread of endemic helminths in the UK affecting animal health and welfare (van Dijk *et al.*, 2010). In Europe, the
- 52 primary arthropod vectors of zoonotic diseases are ticks, and there is good evidence that ticks distributions have

53 changed associated with climate warming (see also section on human health). Tick distributions are determined by

54 temperature, as well as the availability of hosts (Gilbert, 2010).

23.4.4. Forestry

1 2 3

4 5 European forest stands are often reaching the age and stem dimensions at which the accumulated biomass can be 6 harvested. Thus, future routine harvesting may reduce the current forest carbon sink. The EU policy of fostering the 7 use of biomass as an energy source may even lead to increased forest harvesting, perhaps to a level beyond the rate 8 of wood growth, posing a serious threat to the forest carbon sink (Schulze et al., 2010), but also substituting fossil 9 fuels or materials that demand more energy in their production. Increasing harvest level might lower the 10 vulnerability through reduction of share of old and vulnerable stands. Ongoing changes in species composition from 11 conifers to broadleaves could also reduce vulnerability (Schelhaas et al., 2010). Adaptive capacity differs regionally, 12 e.g. depending on the economic relevance of forest management. Fragmented small-scale forest ownership can also 13 constrain adaptive capacity (Lindner et al., 2010). Social attitudes like awareness of climate change were found to 14 be major factors for explaining observed differences in adaptation among Swedish forest owners (Blennow and 15 Persson, 2009). 16 17 Long-term phenological records from eight woody deciduous species from Southern and Central Finland show 18 advancement in the bud burst and flowering time by 3.3 to 11 days during a century, in line with the temperature 19 increase of 1.8 °C (Linkosaloa et al., 2009). The increase of average temperatures has positively affected

20 productivity in Italian mountain beech forest ecosystems since 1986 (Rodolfi et al., 2007). Despite such positive 21 trends, droughts events had well documented effects on tree mortality and forest decline. During or just after the 22 exceptional 2003 drought, mortality was observed on non favourable forest sites because of physiologic constraints, 23 e.g. affecting pubescent oak on South-exposed sides in the Pre-alps in France (Giuggiola et al., 2010; Nageleisen, 24 2008)(Nageleisen, 2008). The year after the drought, in 2004, a second mortality peak was observed in several 25 regions (Lorraine, Centre, Midi-Pyrénées) because of insect outbreaks (Rouault et al. 2006). Three-four years later 26 another wave of mortality was induced by a complex mix of biotic and non biotic factors (Nageleisen, 2008). 27 Increased mortality was also observed in southernmost populations of Scots pine forests in Mediterranean countries 28 (Giuggiola et al., 2010) and in dry inner-alpine valleys (Affolter et al., 2010)(Bigler et al., 2006; Raftoyannis et al., 29 2008). In Cyprus the period 2005 - 2008 was extremely dry causing sudden dieback of both young and mature trees. 30 Even drought adapted, typical Mediterranean species died on poor sites (ECHOES Country report Cyprus). In 31 Greece, intense crown discoloration, needle fall and mortality of fir trees have been observed throughout the country 32 (Raftoyannis et al., 2008). The incidence of forest fires increases substantially during extended droughts. During 33 summer 2009 a series of Mediterranean wildfires broke out across France, Greece, Italy, Portugal, Spain, and 34 Turkey. The most severe were associated with strong winds that spread the fire during a hot, dry period of weather

- 35 (see also EEA, 2010a).
- 36

37 In 2007, the annual average temperature in the Czech Republic was the highest since the beginning of instrumental 38 measurements and was followed by severe outbreaks of bark beetle in Norway spruce and Scots pine forests. In

39 2007, the damage in Norway spruce reached almost 1.9 mil. m³ and similar was observed in 2008 (Knížek et al.,

40 2009). In some parts of the Temperate Continental Zone, fungi are even more problematic damage agents than

41 insects. While some species benefit from milder winters, others spread during drought periods from south to north

- 42 (Drenkhan et al., 2006; Hanso and Drenkhan, 2007). In France, the comparison between observations made in the
- 43 seventies and the more recent national database shows a development of diseases caused by thermophilous
- 44 pathogens (Marcais and Desprez-Loustau, 2007). Many opportunist fungi and insects benefit from the climate
- 45 change both directly, because of the survival of a greater number of individuals, and indirectly, because of the

changes induced in host phenology (Slippers and Wingfield, 2007) and may be directly related to increasing dry and 46

- 47 warm spells frequency. Warming has also favoured exotic pathogens and pests disease.
- 48
- 49 AR4 reported that forests are projected to expand in the north and retreat in the south. Forest productivity and total 50 biomass is likely to increase in the north and decrease in Central Europe, while tree mortality is likely to accelerate 51
- in the south. The northward expansion of forests is projected to reduce current tundra areas under some scenarios. A
- 52 changing climate will favour certain species in some forest locations, while making conditions worse for others,
- 53 leading to substantial shifts in vegetation distribution.

54

1 Some species, vulnerable to climate change could see their suitable areas reduce up to 72% in 2080 for SRES-A2a

2 scenarios (Casalegno et al., 2010). The increase in climatic aridity may compromise the survival of several

3 populations of *Pinus sylvestris* in the Mediterranean basin (Giuggiola et al., 2010). CLIMPAIR model results for 4

peninsular Spain project a significant decrease in the versatility of forest tree formations at elevations of less than 5 1500 m (García-López and Alluéa, 2011). Potential impacts of climate change on scattered broadleaved tree species

6 were recently reviewed by Hemery et al. (2010). Their scattered distributions, exacerbated in many cases by human

7 activity, may make them more vulnerable to climate change. They are likely to have less ability to reproduce or

8 adapt to shifting climate space than more widespread species. Tree growth is controlled by complex interactions

9 between climate- and non-climate-related factors, with forest management also having a significant effect. Possible

- 10 future responses of forests to climate change include increased growth rates, tree-line movements, changes to forest
- 11 growth, phenology, species composition, increased fire incidence, more severe droughts in some areas, increased
- 12 storm damage, and increased insect and pathogen damage. Taken together this is likely to lead to a changed pattern
- 13 of forest cover. Simulation of the IPCC SRES A1B scenario for the period 2070-2100 shows a general trend of a

14 south-west to north-east shift in suitable forest category habitat (Casalegno et al., 2007).

15

16 Although climate change is projected to have an overall positive effect on growing stocks in northern Europe,

17 negative effects are also projected in some regions (e.g. drought and fire pose an increasing risk to Mediterranean

18 forests), making overall projections difficult (Lavalle et al., 2009). Projections were derived for the IPCC SRES

19 scenario A2, processing data from the PRUDENCE data archive, namely the daily-high resolution data (12 km)

20 from the HIRHAM model run by DMI, for the time periods 1960–1990 (control) and 2070–2100 (projections). In

21 agreement with a similar assessment performed for North America (Albert and Schmidt, 2010; Flannigan et al.,

22 2006), the results for Europe confirm a significant increase of fire potential, an enlargement of the fire-prone area

23 and a lengthening of the fire season (Lavalle et al., 2009). The future storm tracks may also shift further north with

24 the consequent possibility of increased risk of damage. Boreal forests are also likely to get more vulnerable to

25 autumn/ early spring storm damage due to expected decrease in period of frozen soil (Gardiner et al., 2010).

26

27 Shortening frost periods as well as thawing permafrost may strongly reduce the accessibility of forests in the Boreal 28 zone with implications for the timber supply to the forest industry (Keskitalo, 2008). Potential impacts of insect and 29 pest damages were reviewed by Netherer and Schopf (2009). It is difficult to quantify precisely how the overall 30 effects of climate change will influence forest management. Besides uncertainties of the climate scenarios as well as 31 prediction errors in growth and yield models, there might be more serious implications on forests through extreme 32 climate events that are not yet well understood (Albert and Schmidt, 2010).

33

34 Life cycle of forests ranges from decades to centuries. As the future climate cannot be predicted with certainty,

35 decisions affecting the future forests have to be made in the face of uncertainty. Possible response approaches 36 include short-term and long-term strategies that focus on enhancing ecosystem resistance and resilience (Millar et

37 al., 2007). Forest management, in particular, thinning and shrub removal could decrease the intensity of drought

- 38 stress by decreasing competition for water resources and thus increasing carbon uptake. For instance, the adaptive
- 39 forest management will play an important role for maintaining Scots pine across southern regions of Europe

40 (Giuggiola et al., 2010). Strategies to anticipate severe forest mortality in the future may include preference of

41 species better adapted to relatively warm environmental conditions (Resco et al., 2007). Climate adapted seed

42 transfer for Scots pine (P. sylvestris) would need to be made over increasingly larger distances in the south and

43 across narrower distances in the north (Reich and Oleksyn, 2008). There is a high demand for comprehensive

44 planning systems which incorporate pest risk assessment and aim to improve forest health and stability (Moore and

- 45 Allard, 2008; Netherer and Schopf, 2009). The selection of tolerant or resistant families and clones may also be an
- 46 adequate measure to reduce the risk of damage by pests and diseases in pure stands (Jactel et al., 2009). In the boreal
- 47 zone, thinning schedules should be adapted to the increased growth rates (Garcia-Gonzalo et al., 2007). A key 48 approach in risk management is diversification of tree species mixtures and management approaches between

49 neighbouring forest stands by improving the overall resilience of forests to climate change (Bodin and Wiman,

- 50 2007; Lindner, 2007). Stands mixed with species not equally susceptible to specific pest species remain less affected
- 51 than monocultures, inter alia because pest population levels remain low due to limited food resources (Jactel et al.,
- 52 2009). As there is uncertainty about the timing of changing species or provenances in forest regeneration, more
- 53 conservative and more rapid adaptation strategies can be applied simultaneously in different forest stands of a
- 54 management unit. Measures to successfully reduce vulnerability to climate change in the Austrian federal forests

1 included the promotion of mixed stands of species well adapted to emerging environmental conditions, silvicultural 2 techniques fostering complexity, and increased management intensity. Furthermore, timely adaptation to sustain 3 forest goods and services was found to be crucial (Seidl et al., 2011).

23.4.5. Fisheries and Aquaculture

8 Marine ecosystems, fisheries and aquaculture are being altered by direct effects of climate change including ocean 9 warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and 10 changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing 11 stressors and require new or modified management approaches. AR4 reported that the recruitment and production of 12 marine fisheries in the N Atlantic are likely to increase.

13

4 5 6

7

14 Warming induces a shift of species ranges toward higher altitudes and latitudes and seasonal shifts in life cycle 15 events (Daufresne et al., 2009). In European seas, warming causes a displacement to the north and/or in depth of fish

populations, with more marked variations in abundance near the "cold" and "warm" boundaries of their 16

17 distribution's area. These displacements of species distribution areas have a direct impact on fisheries but also on the

18 structure and functioning of marine ecosystems. A meta-analysis (Rosenzweig et al., 2008) of the ecological

19 consequences of changes in the sea surface temperature in the maritime zone of the North East Atlantic (Tasker,

20 2008) showed the magnitude of these displacements. Marked changes occurred within 30 years for the distribution

21 of three species of the North Sea (Atlantic cod) a boreal species in the southern limit of distribution around the

22 British Isles, the red mullet (Mullus surmuletus), a coastal Lusitanian species whose range extends from Norway to

23 the northwest of Africa including the Mediterranean and Black Sea, and the anchovy, a pelagic species of

24 subtropical affinities. An increased abundance of anchovy and red mullet in the northern part of their distribution

25 area and a decrease of cod in the southern part of its range are noticeable. In the North Sea, over 30 benthic

26 macrofaunal species have been newly recorded over the last 20 years, with a distinct shift towards southern species 27 [Wiltshire.] In the Bay of Biscay, responses to climate change in 20 species of flatfish over 20 yrs show that

expanding species have a lower latitude range (between 8 ° N and 46 ° N) than declining species (between 47 °N 28

29 and 58 °N, chiefly dab, plaice and flounder). The decline of plaice and flounder is caused by deteriorating conditions

30 for their development in the Bay of Biscay (Hermant et al., 2010). In some freshwater lakes, rare fish that are

31 adapted to cold temperatures are likely to lose a large part of their habitat volume under future climate scenarios

- 32 (Elliott and Bell, 2011).
- 33

34 In the Mediterranean, a relatively high proportion of endemic species is associated to the arrival of alien species at 35 the rate of one introduction every 4 or 5 weeks in recent years (Streftaris et al., 2005). Out of 664 known species of

36 fish (of which nearly 80 are endemic), 127 alien species have become established in the Mediterranean since the

37 beginning of the twentieth century, of which 65 came through the Suez Canal (and 62 through the Strait of

38 Gibraltar). The immigration influx of lessepsian species (from the Red Sea and Indo-Pacific) increases with

warming, as well as the mean latitude of the distribution area of species of Atlantic origin decreases. While in the

39

40 Mediterranean the endemic species distribution remained stable, that of most non-native species has spread

41 northward by an average of 300 km since the 1980s. Therefore, the area of spatial overlap of the two categories of

- 42 species has increased by nearly 25% in 20 years (Ben and Mouillot, 2008).
- 43

44 A widespread reduction in body size in response to climate change in aquatic systems has been observed through 45 long-term surveys and experimental data showing a significant increase in the proportion of small-sized species and

46 young age classes and a decrease in size-at-age (Daufresne et al., 2009). In the northern North Sea, a general

47 decrease in the mean size of zooplankton over time has been observed. Smaller zooplankton species may have

48 general implications for energy transfer efficiency to higher trophic levels, and for the sustainability of fisheries

- 49 resources (Pitois and Fox, 2006).
- 50

51 Numerous studies confirm the amplification through fishing of the effects of climate change on population dynamics

52 and consequently on fisheries (Planque et al., 2010). A typical example is the Atlantic cod, which commercial

- 53 catches have declined in virtually all of its distribution area in the last decades. In the North Sea, the decline of cod
- 54 during the 1980-2000 period results from the combined effects of overfishing and of an ecosystem regime shift due

1 to climate change (Beaugrand and Kirby, 2010). It is worth noting that the analysis of the fish species richness of

2 North Sea and Celtic Seas does not detect the impact of fisheries (ter Hofstede et al., 2010), because the arrival of

3 Lusitanian species compensates for the steep decline in boreal species (Henderson, 2007), and further because the

analysis was performed over a short time period (1997-2008). Nevertheless, temperature limited growth in eutrophic 4 5 lakes would lead to ca. 3 weeks earlier onset of growth and larger sizes in bream as a result of warming (Mooij et

6 al., 2008).

7

8 All components of a food chain cannot be expected to shift their phenology at the same rate, and thus are unlikely to 9 remain synchronous (Durant et al., 2007). The food of North Sea cod larvae has become scarce through the size 10 decrease (Beaugrand et al., 2010) and the replacement of copepod with one developing in late autumn rather than 11 spring (Beaugrand and Kirby, 2010). Over the past decade, the cods' this stock has not been restored from its 12 previous collapse (Mieszkowska et al., 2009)(ICES, 2010). Throughout the North Atlantic, different populations of 13 shrimps (P. borealis) have adapted to local temperatures and phytoplankton bloom timing, matching egg hatching to 14 food availability under average conditions. This matching is vulnerable to interannual oceanographic variability and long-term climatic changes (Koeller et al., 2009). In the North Sea, changes in the phenology of zooplankton groups 15 16 raise concerns on the declining state of fish stocks, which could potentially be exacerbated by gelatinous 17 zooplankton outbreaks. This may lead to trophic dead ends by channelling the flow of energy away from higher 18 trophic levels. In the case of the Iberian upwelling, an observed weakening of upwelling in the inner shelf has 19 slowed down the residual circulation that introduces nutrients. The phytoplankton community has responded to 20 those environmental trends with changes that favour the proliferation of harmful algal blooms and reduce the 21 permitted harvesting period for the mussel aquaculture industry. The demise of the sardine fishery and the potential 22 threat to the mussel culture could have serious socio-economic consequences for the region (Perez et al., 2010). In 23 freshwater systems, shallow lakes have a higher potential for climate induced match-mismatches between

25

24 zooplankton and algae during spring succession (Domis et al., 2007).

26 Climate change may impose severe risks for aquatic animal health if increasing water temperature leads to an 27 increase in the incidence of parasitic diseases. Data for fish farms in Finland demonstrate the effect of increasing 28 water temperature on aquatic disease dynamics, but also emphasise the importance of the biology of each disease

29 (Karvonen et al., 2010) A number of endemic diseases of salmonids (e.g. enteric red mouth, furunculosis,

30 proliferative kidney disease and white spot) will become more prevalent and difficult to control as water

- 31 temperatures increase. Climate change also alters the threat level associated with exotic pathogens. The risk of some
- 32 viral fish diseases declines as infection generally only establishes when water temperatures are less than 14 to 17 33
- degrees C, but the risk of establishment of other exotic epizootic pathogens (haematopoietic necrosis and epizootic 34 ulcerative syndrome) increases. Measures to reduce the threat of exotic pathogens need to be revised to account for
- 35 the changing exotic diseases threat (Marcos-Lopez et al., 2010). Increasing water temperatures and the negative
- 36 effects of extreme weather events (e.g. storms) are likely to alter the freshwater environment adversely for both wild
- 37 and farmed salmonid populations, increasing their susceptibility to disease and the likelihood of disease emergence
- 38 (Marcos-Lopez et al., 2010). For oysters in France, toxic algae may be linked to both climate warming and direct
- 39 anthropogenic stressors (Buestel et al., 2009). With freshwater systems, dense surface blooms of toxic cyanobacteria
- 40 in eutrophic lakes may lead to mass mortalities of fish and birds. High temperatures favour cyanobacteria directly,
- 41 through increased growth rates. Moreover, high temperatures also increase the stability of the water column which 42 shifts the competitive balance in favour of buoyant cyanobacteria. Through these direct and indirect temperature
- 43 effects summer heat waves boost the development of harmful cyanobacterial blooms (Johnk et al., 2008). Therefore,
- 44 current mitigation and water management strategies, which are largely based on nutrient input and hydrologic
- 45 controls, must also accommodate the environmental effects of climate change (Paerl and Huisman, 2009).
- 46
- 47 Non-climate change stresses such as overfishing may interact with climate change to produce surprises (Miller *et al.*,
- 48 2010; Perry et al., 2011; Rijnsdorp et al., 2009). The NAOI (North Atlantic Oscillation Index) is likely to increase
- 49 significantly with time which would lead to a decrease in size of the Atlantic salmon median population size
- 50 (Boylan and Adams, 2006). However, a case study of fisheries in the Bay of Biscay concluded that a major part of
- 51 the gross turnover associated would not be affected by long-term changes in climate (Le Floc'h et al., 2008). The
- 52 Baltic situation illustrates some of the uncertainties and complexities associated with forecasting how fish
- 53 populations, communities and industries dependent on an estuarine ecosystem might respond to future climate
- 54 change (Mackenzie et al., 2007). Marine-tolerant species will be disadvantaged and their distributions will partially

1 contract from the Baltic Sea; habitats of freshwater species will likely expand. Although some new species can be

2 expected to immigrate because of an expected increase in sea temperature, only a few of these species will be able to

3 successfully colonize the Baltic because of its low salinity. Fishing fleets which presently target marine species (e.g.

4 cod, herring, sprat, plaice, sole) in the Baltic will likely have to relocate to more marine areas or switch to other

- 5 species which tolerate decreasing salinities. Fishery management thresholds that trigger reductions in fishing quotas 6 or fishery closures to conserve local populations (e.g. cod, salmon) will have to be reassessed as the ecological basis
- on which existing thresholds have been established changes, and new thresholds will have to be developed for
- 8 immigrant species (Mackenzie *et al.*, 2007).
- 9

10 Integrative assessment can help examine policy options (Miller *et al.*, 2010). Experimentation and innovation at

11 local to the regional levels is critical for a transition to ecosystem-based management (Osterblom *et al.*, 2010).

12 Human social fishing systems dealing with high variability upwelling systems with rapidly reproducing fish species

may have greater capacities to adjust to the additional stress of climate change than human social fishing systems focused on longer-lived and generally less variable species (Perry *et al.*, 2011; Perry *et al.*, 2010). In the Eastern

Baltic, a temporary marine reserve policy could postpone by 20 yrs the negative effects of climate change (Rockmann *et al.*, 2009).

17

1819 23.4.6. Bioenergy Production

19 20

21 The consumption of bioenergy in the European Union has grown, along with a concurrent growth in the trade of 22 biomass for energy purposes. In 2009, the EU set a target that 20% of energy needs should be met by renewable 23 energy by 2020, including 10% from biofuels for transportation (Capros et al., 2011). Bioenergy production and 24 trade will likely continue to increase into the future, driven by emissions reduction targets and increasing concerns 25 about domestic energy security (Bahadur Magara et al., 2011). The total area available for non-food crops in the 26 EU27 (excluding Cyprus and Malta) is estimated to be 13.2 million ha. In scenarios 2020 and 2030, additional land 27 would be released from food and fodder crops, resulting in total land potential of 20.5 million ha in 2020 and 26.2 28 million ha in 2030 (Krasuska et al., 2010). Certification of bioenergy is required to promote the sustainable use of 29 biomass(Bahadur Magara et al., 2011). On the other hand according to (Junginger et al., 2011) results from an 30 European survey show that import tariffs and the implementation of sustainability certification systems are 31 perceived as (potentially) major barriers for the trade of bioethanol and biodiesel, while logistics are seen mainly as 32 an obstacle for wood pellets. Development of technical standards was deemed more as an opportunity than a barrier 33 for all commodities. (Swinbank, 2009) suggests that EU policy is unlikely in conflict with the WTO Agreement on 34 Agriculture or that on Subsidies and Countervailing Measures, but its provisions on environmental sustainability

- 35 criteria could be problematic
- 36

37 There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have

- to be better understood in order to derive more realistic estimates of future bioenergy potentials. In general
- 39 bioenergy from lignocellulosic crops show positive effects on soil properties, biodiversity, energy balance,
- 40 greenhouse gas mitigation, carbon footprint and visual impact when compared to arable crops. Compared to
- 41 replacement of set-aside and permanent unimproved grassland, benefits are less apparent (Rowe *et al.*, 2009). For

42 hydrology, strict guidelines on catchment management must be enforced to ensure detrimental effects do not occur

- 43 to hydrological resources (Rowe *et al.*, 2009; Sevigne *et al.*, 2011).
- 44

45 Poplar SRC system is energy efficient and produces more energy than required for coppice management. Even

- 46 more, elevated CO2 will increase the net energy production and greenhouse gas balance of a SRC system with 18%.
 47 A future increase in potential biomass production due to elevated CO2 outweighs the increased production costs
- 47 A future increase in potential biomass production due to elevated CO2 outweights the increased production costs
 48 resulting in a northward extension of the area where SRC is greenhouse gas neutral, although the northward
- resulting in a northward extension of the area where SRC is greenhouse gas neutral, although the northward 40
- 49 expansion of SRC is likely to erode the European terrestrial carbon sink. (Hastings *et al.*, 2008) showed that 50 Miscarthus about the carbon sink 17% of E
- 50 Miscanthus plantations could contribute to up to 17% of Europe's current primary energy consumption by the year 51 20% but that inter current primary energy consumption of the 20%
- 51 2080 but that inter-annual variation of crop yield can be more than 20%.
- 52
- 53 The potential distribution of temperate oilseeds, cereals, starch crops and solid biofuels is predicted to increase in
- northern Europe by the 2080s, due to increasing temperatures, and decrease in southern Europe (e.g. Spain,

1 Portugal, southern France, Italy, and Greece) due to increased drought. Mediterranean oil and solid biofuel crops,

2 currently restricted to southern Europe, are predicted to extend further north due to higher summer temperatures.

3 Effects become more pronounced with time and are greatest under the A1FI scenario and for models predicting the

4 greatest climate forcing. Different climate models produce different regional patterns. All models predict that

bioenergy crop production in Spain is especially vulnerable to climate change, with many temperate crops predicted
 to decline dramatically by the 2080s. The choice of bioenergy crops in southern Europe will be severely reduced in

future unless measures are taken to adapt to climate change (Tuck *et al.*, 2006).

8 9

10 23.4.6.1. Forest Biomass

11

The quantity of wood directed from the forest industry to the energy sector would cover only around 8% of the European Union's RES target for 2020, and an even lower share for 2030. For some forest industry sectors like production of pulp and panels that would mean an important output reduction, around 20–25%. Additional felling could be an important source of wood for bioenergy in the near future, when utilization of the forest resource potential is still not very high. However, toward 2030, forest resource utilization is projected to increase and might

potential is still not very high. However, toward 2030, forest resource utilization is projected to increase and might become a limiting factor for additional biomass potentials. Given the relatively high economic growth assumed in

the scenarios and the rather strong development in the demand for forest industry products, there is a considerable

chance that the supply of wood biomass for energy will be largely limited to logging residues in the long run

20 (Moiseyev *et al.*, 2011). An analysis by (Verkerka *et al.*, 2011) showed that it is possible to increase the availability

of forest biomass significantly beyond the current level of resource use. Implementing these ambitious scenarios

22 would imply quite drastic changes in forest resource management across Europe.

Considering a complete life cycle for forest residues, comparing the climate impacts from the recovery, transport and combustion of forest residues (harvest slash and stumps), versus the climate impacts that would have occurred if the residues were left in the forest and fossil fuels used instead, over a 240-year period, the cumulative radiative forcing is significantly reduced when forest residues are used instead of fossil fuels (Sathrea and Gustavsson, 2011).

28 29

23

30 23.4.6.2. Biofuel for Transport Sector 31

32 The use of biofuels can reduce greenhouse gas emissions from the transport sector, however, biofuel production and 33 combustion also caused emissions directly (local air pollution) as well as indirectly. An explicit calculation of 34 indirect land use change (ILUC) emissions from EU biofuel consumption shows that ILUC emissions alone could 35 shift the CO2 balance for biofuels from reductions to more emissions relative to fossil fuels. However, some of the 36 uncertainties remain (Overmars et al., 2011). A review of life-cycle studies of biodiesel in Europe compared in 37 terms of non renewable primary energy requirement and GHG intensity of biodiesel shows a high variability of 38 results, particularly for biodiesel GHG intensity, with emissions ranging from 15 to 170 g CO2eq MJ_{f}^{-1} (Malçaa and 39 Freirea, 2011).

40

Current accounting method mainly promotes biofuel feedstock production on former cropland, thus increasing the competition between food and fuel production on the currently available cropland area. It is profitable to use degraded land for commercial bioenergy production as requested by the European Commission to avoid undesirable LUC but that the current regulation provides little incentive to use such land (Lange, 2010). Trade of bio-fuels in EU and Turkey has been become important in recent years. The most important exporters are Germany, Italy, Latvia and Poland and the most important importers are Germany, Italy, Belgium and UK. It is seen that Turkey has a low trade level (Akyüz and Yasin Balaban, 2011).

48 49

50 23.4.7. Rural Development

51

52 Rural development is one of the key policy areas for Europe, yet there is little or no discussion in the literature about 53 the role of climate change in affecting future rural development. The EU White Paper on adapting to climate change 54 (EC, 2009) encourages Member States to embed climate change adaptation in the three strands of rural development aimed at improving competitiveness, the environment, and the quality of life in rural areas. It appears however that little progress has been made in achieving these objectives.

23.5. Implications of Climate Change for Health and Social Welfare

23.5.1. Human Population Health

Climate change is likely to have a range of health effects in Europe. Further studies since AR4 have confirmed the effects of heat on mortality and morbidity in European populations and particularly in the older population (Åström *et al.*, 2011)(Kovats and Hajat, 2008). With respect to sub-regional vulnerability, populations in southern Europe appear to be most sensitive to hot weather, and also will experience the highest heat exposures (Iñiguez *et al.*, 2010; Tobías *et al.*, 2010). However, elderly populations in central (Hertel *et al.*, 2009) and northern Europe (Rocklöv and Forsberg, 2010) are also vulnerable to hot weather and heat wave events, and are less likely to be prepared. Adaptation measures to heat include heat wave plans (EEA-JRC-WHO, 2008) and changes to housing and infrastructure (e.g. retrofitting houses, installing cool rooms in residential homes). Further work has been done to characterize heat stress as an occupational hazard (see chapter 11).

17 18

1

2

3 4 5

6 7

8 9

10

11

12

13

14

15

16

19 Climate change will increase the frequency and the intensity of heat waves (see above) (Solymosi *et al.*, 2010).

20 Several studies have estimated the impact of climate scenarios on future heat-related mortality at the city level.

21 Baccini et al. (2011) estimated that greatest impacts were projected in Budapest and Athens under an A2 emissions

scenario in 2030. The smallest impacts were projected in Dublin, Zurich and Ljubljana. For most countries in the

Europe, the current burden of cold-related mortality is greater than the burden of heat mortality, although few studies have quantified benefits in terms of the reduction of cold related mortality (Doyon *et al.*, 2008).

24 25

There have been significant developments in mapping the current distribution of important vectors and vector-borne

27 diseases in Europe, and describing the role of important environmental factors such as land use cover and climate

28 factors. The Asian tiger mosquito (*Aedes albopictus*, a vector of dengue and other arboviruses) is currently present

in many countries in southern and eastern Europe (Albania, Croatia, France, Greece, Monaco, Montenegro, Italy,

30 Slovenia and Spain) (ECDC, 2009). An assessment of the potential impact of climate change indicated the potential

for eastward expansion in its distribution in Europe, with some areas in the Balkans becoming unsuitable (ECDC,

2009). A study in Italy also projected the potential for northward shift of the vector's distribution in that country
 (Roiz *et al.*, 2011).

33 34

Visceral and cutaneous leishmaniasis are sandfly-borne diseases present in the Mediterranean region. A comprehensive review described that climate change is unlikely to affect the distribution of these infections in the near term (Ready, 2010). However, in the long term (15-20 years), there was potential for climate change to facilitate the expansion of either vectors or current parasites northwards. The risk of introduction of exotic *Leishmania* species was considered very low due to the low competence of current vectors.

40

41 The effect of climate warming on the risk of imported or locally-transmitted (autochthonous) malaria in Europe has

42 been assessed in Spain (Sainz-Elipe *et al.*, 2010), France (Linard *et al.*, 2009) and the UK (Lindsay *et al.*, 2010).

43 Disease re-emergence would depend upon many factors including: the introduction of a large population of

infectious people or mosquitoes, high levels of people-vector contact, resulting from significant changes in land use,as well as climate change.

46

47

49

48 Food safety

50 Since AR4 there have been several studies and reviews that have investigated the impact of climate change on food

51 safety, at all stages from production to consumption (FAO, 2008; Jacxsens *et al.*, 2010; Popov Janevska *et al.*,

- 52 2010)(Miraglia *et al.*, 2009). The transmission of some key food pathogens is sensitive to temperature (e.g.
- 53 salmonellas) although there is some evidence that this sensivity has declined in recent years (Lake *et al.*, 2009).

1 seen as a mitigation issue). Weather effects pre and post harvest mycotoxin production. Cold regions may become

liable to temperate problems concerning ochratoxin *A*, *patulin* and *Fusarium* toxins. Warming may increase the risk
 of aflatoxin production. A control of the environment of storage facilities may avoid post-harvest problems but at

4 high additional cost (Paterson and Lima, 2010).

5

6 Other potential consequences concern marine biotoxins in seafood following production of phycotoxins by harmful 7 algal blooms and the presence of pathogenic bacteria in foods following more frequent extreme weather conditions 8 (Miraglia *et al.*, 2009). Risk modelling is often developed for single exposure agents (e.g. a pesticide) with known 9 routes of exposure. These are difficult to scale up to the population level. The multiple mechanisms by climate may 10 affect transmission or contamination routes also makes this very complex (Boxall *et al.*, 2009).

11 12

13

14

19

23.5.2. Health Systems and Critical Infrastructure

Several countries have undertaken reviews of flood risks to hospitals, schools, water treatment/pumping stations.
The UK found that 7% of schools were in flood risk zones (EA 2008). Wildfires also represent a risk to
infrastructure. In 2007, a forest fire in Greece caused the closure of a major road and access to the international
airport.

The heat waves of 2003 and 2006 had adverse effects on patients and staff in hospitals. Evidence from France and Italy indicate that death rates in in-patients increased during heat wave events (Ferron *et al.*, 2006; Stafoggia *et al.*, 2008). Further, higher temperatures have serious implications for drug storage and transport.

23 24 25

26

23.5.3. Social Impacts

There is little evidence regarding the implications of climate change for employment and/or livelihoods in Europe. A JRC report investigated the impacts of climate policies (mitigation) on employment by sector, but there has no been overall synthesis of climate change impacts per se. However, the sector summaries above indicate that there are likely to be changes to some industries (e.g. tourism, agriculture) that may lead to changes in employment opportunities by region and by sector in the long term.

32 33

35

34 23.5.3.1. Impacts of Extreme Weather Events/Disasters

The current burden for weather disasters is high and the risks are concentrated in certain geographical areas. Within Europe, projections to the end of this century show a significant increase in storm surge elevation for the continental North Sea and south east England. Populations at risk of increased winter river flooding are anticipated to be in central and northern Europe. The risk of increased flash flooding due to climate change may also increase. Flash floods are the most serious type of flood for mortality risk (drowning).

Little research has been carried out on the impact of extreme weather events such as heat waves and flooding on displacement in Europe (EC, 2009). Managed retreat (also called managed realignment) is one of the options to adapt to sea level rise in coastal areas (see Rupp-Armstrong and Nicholls 2007 and section on integrated coastal management below).

46 47

49

41

48 23.5.3.2. Impacts of Climate Change on Indigenous Populations in Europe

50 In the European region, the indigenous populations are present in Arctic regions are considered highly vulnerable to

51 climate change impacts on livelihoods and food sources (Arctic Climate Impact Assessment 2005)(see also the Polar

- 52 chapter). Research has focuses on indigenous knowledge, impacts on traditional food sources and community
- responses/adaptation, in the Saami in Finland (Mustonen and Mustonen, 2011a; Mustonen and Mustonen, 2011b)
- 54 and Chukchi and Evenki peoples in Russian Federation.

23.5.4. Cultural Heritage

The impact of climate change on cultural heritage needs to consider both the consequence of extreme events and gradual damage on materials (Brimblecombe *et al.*, 2006; Brimblecombe and Grossi, 2010; Brimblecombe, 2010a; Brimblecombe, 2010b; Grossi *et al.*, 2011). Water, as ice, liquid water and water vapour, all have important interactions with heritage (Sabbioni *et al.*, 2010). Cultural heritage is a non renewable resource and impacts from environmental changes are assessed over long timescales (Brimblecombe and Grossi, 2008)(Bonazza *et al.*, 2009a; Bonazza *et al.*, 2009b; Brimblecombe and Grossi, 2009; Brimblecombe and Grossi, 2010; Grossi *et al.*, 2008). The difference between atmospheric climate change and sea-level rise in its impact on heritage (Storm *et al.*, 2008). The impact of climate change in indoors environment where most of cultural heritage is preserved is important (Lankester and Brimblecombe, 2010). Climate change may affect visitor behaviour at heritage sites (Grossi *et al.*, 2010).

(Lankester and Brimblecombe, 2010). Climate change may affect visitor behaviour at heritage sites (Grossi *et al.*,
 2010).

15

1 2 3

4 5

6

7

8

9

10

11

12

16 Surface recession on marble and compact limestone is predicted to change during the present century in Europe. In

17 the 2080s, Central Europe, Norway, the northern UK and Spain will experience a surface recession ranging between

- 18 20 and 30 μ m/y. Generally, a decrease in surface recession of about 1-4 μ m/y in Southern Europe is predicted,
- 19 indicating it to be an area of decreasing risk (Bonazza *et al.*, 2009a; Bonazza *et al.*, 2009b).Monuments in marble

20 located in the Mediterranean Basin will generally continue to experience within this century the highest level of

21 thermal stress (Bonazza et al., 2009a; Bonazza et al., 2009b). A general reduction in frost damage is forecast, with

22 the exception of northern and mountain areas. The problem may increase in areas characterized by permafrost

23 (Greenland, Iceland) and in wood (Grossi *et al.*, 2007; Sabbioni *et al.*, 2008). Damage to porous materials

(sandstone, mortar and brick) due to salt crystallisation may increase all over Europe (Benavente *et al.*, 2008; Grossi
 et al., 2011).

26

Biological weathering may increase in some areas by the 2080s due to climate change. Boreal areas such as northern
Russia, Scandinavia and Scotland are expected to undergo a marked increase in biomass stock, with a pronounced
decrease is predicted in western and southern Europe, except for the Alps. As Northern and Eastern Europe become
warmer in the future, with high precipitation levels, greater attention will be required in the protection of wood

31 structures against rainwater effect. Damage from high winds may increase in 2080s in northern areas of Europe

- 32 (Sabbioni *et al.*, 2010).
- 33

Europe has many unique landscapes including, amongst other, the cork oak based Montado in Portugal, the Garrigue of southern France, Alpine meadows and the grouse moors of the UK. These landscapes reflect the cultural heritage of rural areas that have evolved from centuries of human intervention. Many, if not all, are sensitive to climate variables and even small changes in the climate could have significant impacts. Many such areas are also protected through rural development and environmental protection policy.

39 40

41 23.6. Implications of Climate Change for the Protection of Environmental Quality 42 and Biological Conservation

43 44

23.6.1. Terrestrial and Freshwater Ecosystems

45 46 The observed northward and uphill distribution shifts of many European plant and animal (birds, insects, and 47 mammals) species has been attributed to observed climate change. Concerning plant phenology, the timing of 48 seasonal events in plants is changing across Europe due to changes in climate conditions. Between 1971 and 2000, 49 the average advance of spring and summer was 2.5 days per decade. The pollen season starts on average 10 days 50 earlier and is longer than 50 years ago. Concerning animal phenology, climatic warming has caused advancement in 51 the life cycles of many animal groups, including frogs spawning, birds nesting and the arrival of migrant birds and 52 butterflies. Seasonal advancement is particularly strong and rapid in the Arctic. Breeding seasons are lengthening, 53 allowing extra generations of temperature-sensitive insects such as butterflies, dragonflies and pest species to be 54 produced during the year (Feehan et al., 2009). For common European birds, species with the lowest thermal

- 1 maxima showed the sharpest declines between 1980 and 2005. Thermal maximum predicted recent trends
- 2 independently of other potential predictors (Jiguet *et al.*, 2010). Possible disruption of established biotic interactions
- 3 (mismatchs) could benefit generalist species at the expense of specialists putting additional pressures on the capacity
- 4 of ecosystems to provide certain services and on species of conservation importance (Biesmeijer *et al.*, 2006).
- 5

6 By the late 21st century, according to climate envelope models, the most dramatic changes could occur in Northern 7 Europe, where more than 35% of the species composition in 2100 could be new for that region, and in Southern

- 8 Europe, where up to 25% of the species now present would disappear. The mean stable area of species decreases
- mostly in Mediterranean scrubland, grassland/steppe systems and warm mixed forests (Alkemade *et al.*, 2011).
 Trends in seasonal events will continue to advance as climate warming increases in the years and decades to come.
- 11 Suitable climatic conditions for Europe's breeding birds are projected to shift nearly 550 km northeast by the end of
- the century (Huntley *et al.*, 2007). Projections for 120 native European mammals suggest that up to 9% face
- extinction during the 21st century. Amphibian and reptiles because of low dispersal capacities will probably undergo
- 14 a reduction of range (Hickling *et al.*, 2006). These trends are projected to continue as climate warming increases in 15 the decades to come. (Feehan *et al.*, 2009).
- 16

Disruption of community interactions can arise when species differ in their sensitivity to rising temperature, leading to mismatched phenologies and/or dispersal patterns. A survey of published literature over a wide range of animal

- traits and in dispersal distances (Berg *et al.*, 2010). This may lead to novel emergent ecosystems composed of new
- 21 species assemblages arising from differential rates of range shifts of species (Montoya and Raffaelli, 2010). Changes
- in genetic structure along migration fronts could nevertheless increase the adaptation of populations to climatechange.
- 24

25 With climate change, higher winter survival of fish, lower zooplankton grazing of phytoplankton the following

- summer and more turbid waters, particularly in shallow eutrophic lakes are expected (Balayla *et al.*, 2010). The
- 27 projected increase of winter precipitation in southern Europe is likely to increase the nutrient loadings to lakes and 28 contribute to their eutrophication. The impact is proportional to the runoff/in-lake concentration ratio of nutrients
- rather than to the retention time, and is more pronounced in lakes with lower trophy (Noges *et al.*, 2011). In three
- natural shallow lakes located in the southwest of France, several planktonic species typically encountered in tropical
- areas were observed during 2006 and 2007 possibly as a result of minimal temperatures increases that were observed
- 32 over the last 30 years and could have played a key role in algal survival through winter (Cellamare *et al.*, 2010).
- 33

It is suggested that more frequent extremes may have more severe consequences than progressive changes in means (Fuhrer *et al.*, 2006). Floodpulses are expected to increase (including multi-annual flooding cycles) exposing lakes

- (Fuhrer *et al.*, 2006). Floodpulses are expected to increase (including multi-annual flooding cycles) exposing lakes
 to changes in element cycles (Wantzen *et al.*, 2008). More frequent heavy precipitation during winter in central
- Europe increasing the risk of large-scale flooding and loss of topsoil due to erosion. In summer, a decrease in the
- frequency of wet days and shorter return times of heat waves and droughts increasing the risk of crop yield and
- forage quality losses and in forests, the acceleration of the replacement of sensitive tree species therefore reduce
- 40 carbon stocks. A modelling study shows that Mediterranean arid ecosystems could undergo discontinuous
- 41 transitions to a desert state if increasing aridity is coupled to high grazing pressures (Kefi *et al.*, 2007). Simulations
- 42 suggest an overall increase in occurrence of summer wildfires because of increasing temperatures and decreased
- 43 rainfall. Some management measure such as controlled burning, grazing or mowing to remove fuel may help lower
- 44 effects of increased fires on ecosystem services (Albertson *et al.*, 2010).
- 45
- Vulnerability is the degree to which a system is susceptible to, or unable to cope with, adverse effects of climate
 change, including climate variability and extremes. A first attempt on quantitative spatial vulnerability show that
 vulnerability to global change differs between sectors, regions and future scenarios, but that southern Europe has the
 lower adaptive capacity and is especially vulnerable (Metzger *et al.*, 2008).
- 50
- 51
- 52

1 2

23.6.2. Coastal and Marine Ecosystems

3 Europe's coastal zones are of strategic importance to the European Union and beyond, as they support millions of 4 people, provide major sources of food and raw materials and vital links for transport and trade, the location of some 5 of our most valuable habitats, and the favoured destination for leisure time (CIESM, 2008; Ekeboom, 2007). 6 However, due to climate impacts, these zones are facing increasing environmental, economic and social problems. 7 There will be significant economic effects on water-dependent economic sectors and social effects resulting from the 8 loss of provision. Fisheries biodiversity, productivity and catch options, as well as aquaculture will be affected by 9 SLR, glacial melt and ocean acidification (Gambaiani et al., 2009; Philippart et al., 2011). Melting sea ice will open 10 up shipping and oil exploration areas, but this may lead to detrimental development (HELCOM, 2007). Coastal 11 tourism will be affected due to accelerated coastal erosion and changes in the marine environment and marine water 12 quality, with less fish and more frequent jelly fish and algae blooms (HELCOM, 2009)(Lejeusne et al., 2009). SLR, 13 storms and flooding will affect critical coastal infrastructure in particular communities situated close to the coast. 14 Sea ports will be exposed to coastal flooding, and storms may provoke impacts on maritime transport and related 15 infrastructure (Bulleri, F. and Chapman, M.G., 2010). The increasing cost of insurance and unwillingness of 16 investors to place assets in affected areas is a potential growth impediment to the economy in coastal regions and 17 islands (Day et al, 2008).

18

19 The uncertain nature of the impact of climate change on coastal and marine ecosystems requires comprehensive and

20 ongoing integration of adaptation options through a variety of measures, including policy instruments at national, 21 regional, international scales, economic demand and supply-side measures, combining green infrastructure with

supporting natural environmental processes as well as behavioural and attitudinal changes in how the environment is

23 perceived and valued (Bulleri. and Chapman, 2010). Adapting to the challenges outlined above will require an

24 integrated approach to the management of marine and coastal zones in particular foundational and catalytic policies,

e.g. measures to mainstream adaptation into sectoral policies, early response measures for floods and coastal

26 erosion, ensuring that climate change considerations are incorporated into marine strategies and by providing

27 mechanisms for regular updating to take account of new information (OSPAR, 2010; UNEP, 2010). Providing for

28 'good ecological status' and preventing deterioration in the quality of the marine environment as a result of climate 29 change will require policies that are flexible to the specific impacts of climate change at particular locations.

integrate across sectors and levels of governance and account for the cross-border nature of many coastal processes
 (OSPAR, 2010).

32 33

34 23.6.3. Air Quality

Climate change will have complex and local effects on pollution chemistry, transport, emissions and deposition.
Outdoor air pollutants have adverse effects on human health, biodiversity, crop yields and cultural heritage. The

main outcomes of concern are both the average (background) levels and peak events for tropospheric ozone,

39 particulates, sulphur oxides (SO_x) and nitrogen oxides (NO_x) . Future pollutant concentrations in Europe have been

40 assessed using atmospheric chemistry models, principally for ozone (Forkel and Knoche, 2006; Forkel and Knoche,

41 2007). Other pollutants have been examined using other methods. [These modelling studies are reviewed in more

42 detail in Chapter 1/21] Reviews have concluded that the GCM/CTM studies find that climate change per se

43 (assuming no change in future emissions or other factors) is likely to increase summer tropospheric ozone levels

44 (range 1–10 ppb) by 2050s in polluted areas (that is where concentrations of precursor nitrogen oxides are higher)

(AQEP, 2007; Jacob and Winner, 2009). The effect of future climate change alone on future concentrations ofparticulates, nitrogen oxides and volatile organic compounds is much more uncertain.

47

48 Overall, the model studies show that higher emissions controls will be required to maintain air quality below current

European standards. Recent evidence has shown adverse impacts on agriculture from even low concentrations ofozone.

51

52 Climate change may increase the risk of forest fires, which in turn will increase particulate exposures. For example,

- 53 in Greece, forest fires were major contributors to PM concentrations (up to 50%) (Lazaridis *et al.*, 2008) (see also
- 54 Box 23-1 on heat wave and fires in 2010 in the Russian Federation).

Some studies have attributed an observed increase in European ozone levels to observed warming (Meleux *et al.*, 2007), which appears to be driven by the increase in extreme heat events in 2003, 2006 and 2010 (Solberg *et al.*, 2008).

23.6.4. Soil Protection

8 9 Information on the impacts of climate change on soil and the various related feedbacks is very limited. Projected 10 increased variations in rainfall pattern and intensity will make soils more susceptible to erosion. Projections show 11 significant reductions in summer soil moisture in the Mediterranean region, and increases in the northeastern part of 12 Europe (Calanca et al., 2006). Climate change further alters the habitat of soil biota, which affects the diversity and 13 structure of species and their abundance. Ecosystem functioning is modified consequently, but quantified knowledge 14 of these impacts is limited. There is still a large uncertainty on the impacts of climate change on soil erosion. For the 15 A2 scenario and a set of land use scenarios in Tuscany, even with a decline in precipitation volume until 2070, in 16 some months higher erosion rates would occur due to higher rainfall erosivity (Marker et al., 2008). However, a case 17 study on sugar beet cultivation in Upper-Austria based on A2 emission scenario as simulated by the regional climate 18 model HadRM3H predicted that annual average soil losses under climate change declined in all tillage systems by 19 11 to 24%. Such values are inside the margins of uncertainty typically attached to climate change impact studies. 20 (Scholz et al., 2008). Erosion can further lead to supply of sediments to watersheds. In Denmark for a future 21 scenario period 2071-2100, climate-change-induced changes in suspended sediment transport can increase. For two 22 Danish river catchments, mean annual suspended sediment transport is modelled to increase by 17 and 27% in 23 alluvial and non-alluvial rivers, respectively, for steady-state land use scenarios (Thodsen et al., 2008; Thodsen, 24 2007).

25

1 2

3

4

5 6 7

Direct effects of climate change, like temperature increase, modification of wind and precipitation patterns, sea level rise, snow and ice cover, have the potential of affecting the distribution and degradation of soil and sediment organic pollutants, including persistent organic pollutants. Different climate change scenarios were tested over the next 50 y in the Venice Lagoon (Italy), finding noticeable variations in persistent organic pollutants concentration even for minor environmental changes. Model results suggest that if climate change may have the potential of reducing the environmental levels of these chemicals, it would probably enhance their mobility and hence their potential for long

32 range atmospheric transport (Valle *et al.*, 2007).

33

34 The current cost of erosion, organic matter decline, salinisation, landslides and contamination is estimated to be 35 EUR 38 billion annually for the EU25. Evidence shows that the majority of the costs are borne by society in the 36 form of damage to infrastructures due to sediment run off and landslides, increased health-care needs, treatment of 37 water contaminated through the soil, disposal of sediments, depreciation of land around contaminated sites, 38 increased food safety controls, and costs related to the ecosystem functions of soil (JRC-EEA, 2010). Adaptive land-39 use management has a large potential for climate change response strategies concerning soil protection. In central 40 Europe, compared to unsustainably high soil losses for conventional tillage, conservation tillage systems reduced 41 modelled soil erosion rates under future climate scenarios by between 49 and 87% (Scholz et al., 2008). Preserving 42 upland vegetation cover is a key win-win management strategy that will reduce erosion and loss of soil carbon, and 43 protect a variety of services such as the continued delivery of a high quality water resource (House et al., 2011). In 44 upland regions of England and Wales revegetation of bare soil was an important feature of upland sites, resulting in 45 a net decrease in erosion area on 63% of sites (McHugh, 2007). By absorbing up to twenty times its weight in water, 46 increased SOM can contribute to reduce risks of flooding. Maintaining water retention capacity is thus important, 47 e.g. through adaptation measures (Post et al., 2008). Soil conservation methods like zero tillage and conversion of 48 arable to grasslands would maintain their protective effect on soil resources, independent of the climate scenario 49 according to an up-scaling and modelling approach in SW-Germany. However, in this study, climate-induced 50 changes in the frequency and intensity of heavy rainstorms were only considered in a limited way (Klik and 51 Eitzinger, 2010). 52

- 53
- 54

23.6.5. Water Quality

1 2

Climate change may affect water quality in several ways, including increasing temperatures lead to less dissolved
oxygen, and increasing the risk of algal blooms (Ulén and Weyhenmeyer, 2007), and less rainfall may lead to low
flows which increase concentrations of biological and chemical contaminants. Several case studies on river
catchments have been undertaken: Seine river (Ducharne, 2008); Danish water shed (Andersen *et al.*, 2006) and the
Meuse in Germany (van Vliet and Zwolsman, 2008). Climate change may have an adverse effect on river flows,
yields from groundwater, nutrient flushing episodes, and surface water quality in the UK (Whitehead *et al.*, 2006;
Whitehead *et al.*, 2009; Wilby *et al.*, 2006). The implications for drinking water quality are less certain.

10 11 12

13 14

15

23.7. Synthesis of Observed Impacts and Adaptation to Climate Change

23.7.1. Observed Impacts

Newer findings strongly confirm AR4 findings of many European systems and sectors being particular sensitivity to recent trends in temperature and especially in the Mediterranean area to precipitation (Feehan *et al.*, 2009)(see also sections above and Chapter 18). Based on a large number of observations, (Rosenzweig *et al.*, 2008) could attribute this fingerprint in nature to recent climate change and found a discernible anthropogenic influence in changes of natural systems in Europe, similarly to Asia and North America. Equally, footprints of climate change were

21 identified and attributed in the Arctic marine ecosystems, including many examples from the European Arctic

22 (Wassmann *et al.*, 2011). There is more evidence and it is more compelling of observed effects of climate change on 23 a wide range of species types (including insects, mammals, fish, and birds) see Section 23.6.1 (Hickling *et al.*,

24 2006).

25

26 [INSERT TABLE 23-2 HERE

Table 23-2: Observed changes in natural and managed systems to observed climate change (papers published since
 the AR4).]

29

There is evidence that since 1975 the length of the frost-free growing season of several agricultural crops in Europe

has increased. Nevertheless, the opposite trend has been observed in the Mediterranean countries, in the Black Sea

32 area and in parts of Russia, where risks from late winter-spring frosts have increased (Lavalle *et al.*, 2009a). Earlier 33 crop flowering and maturity have been observed and documented in recent decades, and these are often associated

with warmer (spring) temperatures (Craufurd and Wheeler, 2009). For instance, the phenology of agricultural and

horticultural events from a national survey in Germany shows a mean advance of 1.1-1.3 days per decade with more

than 80% of this advance being caused by warming (Estrella *et al.*, 2007). Warmer temperatures that shorten

development stages of determinate crops tend to reduce the yield of a given variety (Craufurd and Wheeler, 2009).

A study by (Lobell *et al.*, 2011) found that climate warming was a contributory cause to the observed trends in crops since 1980.

40

41 Climate change will have an effect on invasive species, particularly those moving north into southern Europe. There 42 is some evidence that this is already occurring. Increasing number of colonization events and subsequent

42 is some evidence that this is already occurring. Increasing number of colonization events and subsequent

- establishment of species originating from regions with a warmer climate than in the area of establishment and spread
 in response to changed climatic conditions of the recent past (Walther *et al.*, 2009).
- 46 [INSERT TABLE 23-3 HERE

47 Table 23-3: Observed impacts and responses (empirical studies post 2006, with criteria). [forthcoming]]

48 49

45

50 23.7.2. Adaptation is Already Occurring

51

52 There is less literature on the responses to climate change in the human systems in Europe. A literature review of

54 (Berrang-Ford *et al.*, 2011). Countries that are vulnerable to sea level rise investigate engineering options to protect

1 their land. It is suggested that some countries have made changes in flood protection standards due to climate

2 (Netherlands, Germany and the UK). In addition, some areas have adapted building (residential, commercial)

3 standards /regulations to be responsive to future warming. [more to be added]. Plans are under way to invest in new 4 municipal sewerage systems or to redesign nature protection networks. There is some evidence that adaptation is

already occurring in water resource management in Europe, such as upstream/downstream links in large catchments.

- 5 6 7
- 8 9

11

23.8. Cross-Sectoral Adaptation Decisionmaking and Risk Management

10 23.8.1. Coastal Zone Management

12 The German government has developed a plan for coastal and flood protection of Mecklenburg-Vorpommern

13 coastal zone, to address coastal erosion and retreat, and the protection of human interests. The materials used for

14 coastal protection should be natural (sands, gravel, boulders, wood) and degradable (Ministerium 1993). The

15 legislative regulation enforces that coastal protection is only permissible in connection with the built-up

16 environment. In 2007 the "Action Plan on Climate Change for Mecklenburg-Vorpommern" includes

17 recommendations on coastal protection (Ministerium für Wirtschaft, Arbeit und Tourismus, 2007): new buildings in

18 potential flood prone areas shall be avoided by planning regulations, and those current coastal protection

19 installations shall be adapted to the effects of climate change, including retreat options. However, there are limits to

20 how far communities can adapt to rapid and large sea-level rise. Studies have examined such impacts in the UK

(Lonsdale *et al.*, 2008) and the Netherlands (Olsthoorn *et al.*, 2008). There is no integrated coastal zone management
 or climate change adaptation for the Baltic Sea Region.

23 24

25

26

23.8.2. Integrated Water Resource Management

- Shift in water management approaches (e.g. "hard" versus "soft" measures, battle versus accommodation, role
 of participation) (Pahl-Wostl, 2007)(Wiering and Arts, 2006)
- Overview of adaptation strategies for water management in southern/Mediterranean countries (Iglesias *et al.*, 2007).
- Testing the robustness of adaptation decisions in water management (Dessai and Hulme, 2007)
- Adapting England and Wales water supply (Arnell and Delaney, 2006)
- 33 34

36

35 23.8.3. Disaster Risk Reduction and Risk Management

- Description of EU policies; flood risk, natural and technological hazards, civil protection
- Adaptation in urban areas and cities (review by (Hunt and Watkiss, 2011))
- Flood management (Petrow *et al.*, 2006) (2002 Elbe flood)
- Flood risk mapping activities in Europe: (Merz *et al.*, 2007); (de Moel *et al.*, 2009)
- 41 Role of individuals (Terpstra and Gutteling, 2008)
- 42 43

44

45

47

48

23.8.4. Land Use Planning

46 The literature on land use planning as a means of adapting to climate change is sparse:

- The literature that does exist refers to flood risk aversion, coastal defence of urban areas, biological conservation, health implications of urban areas, agricultural and forest policy and city planning
- Flood risk studies tend to focus on engineering solutions to climate risks rather than the institutional,
 governance and policy strategies to implement risk reduction solutions (Coeur and Lang, 2008)
- Protection policy and planning can make a big difference to fluvial flood risk. For example, because of
 higher flood protection standards in the Netherlands compared with Germany, fluvial flood risk is greater
 in the Lower Rhine (Nordrhein-Westfalen) than in the Netherlands (Linde te, 2005).

1 Furthermore, there is evidence to suggest that conventional fluvial flood protection measures are not 2 providing sufficient protection level and are very cost intensive (Manojlovic and Pasche, 2008) 3 Some studies refer to the systematic failure of planning policy to account for climate and other • 4 environmental changes (Branquart et al., 2008) 5 Conservation planning in response to climate change impacts on species will involve several strategies: "(i) 6 link isolated habitat that is within a new suitable climate zone to the nearest climate-proof network; (ii) 7 increase colonizing capacity in the overlap zone, the part of a network that remains suitable in successive 8 time frames; (iii) optimize sustainable networks in climate refugia, the part of a species' range where the 9 climate remains stable." (Vos et al., 2008) 10 • A number of cities worldwide have started to create climate adaptation plans and in Europe this includes 11 London and Rotterdam (Sanchez-Rodriguez, 2009). The European plans tend to be driven by the strong 12 political leadership of mayors (Sanchez-Rodriguez, 2009). 13 The literature on city governance and climate change is dominated by climate mitigation and energy • 14 consumptions issues rather than using land use planning to assist cities to adapt to climate change 15 (Bulkeley, 2010). 16 17 18 23.8.5. Mountains 19 20 The delineation of mountain areas is variable depending on the system, the sector or the policy. EEA (2010a) 21 considers that mountain areas cover 36% of the continent (Turkey included, Russia excluded). With respect to water, 22 a snow cover decrease (Stewart, 2009)(Pons et al., 2010) and a glacier retreat already are visible (Huss et al., 2008; 23 Nesje et al., 2008). This trend will continue during the 21st century (Haeberli and Hohmann, 2009a; Haeberli and 24 Hohmann, 2009b; Lopez-Moreno et al., 2008) and will modify the water availability, both in quantity and in 25 seasonality. Adaptation measures must be taken to limit enhanced natural hazard due to glacier retreat, (Frey et al.,

seasonality. Adaptation measures must be taken to infinit enhanced natural nazard due to gracter retreat, (Frey *et al.*,
2010), reduced soil cohesion by permafrost (Harris *et al.*, 2009), slope denudation by forest fire. Mountain flora will
be largely impacted in a contrasted manner. In general, the high elevation plants will suffer higher risks of habitat
loss of endemic species (Dirnböck *et al.*, 2011), but some regions, like the Spanish Pyrenees or the eastern Austrian
Alps may be particularly affected, due to higher temperature and precipitation changes in these regions (Engler *et al.*, 2011).

31

32 The most significant impacts of climate change for economic sectors in mountain regions will be the adverse effect 33 on winter tourism (see also section 23.3.4 above), studies shows reduction in snow cover in. the Swiss Alps 34 (Uhlmann et al., 2009) and the Spanish Pyrenees (López-Moreno et al., 2009) and increased variability (Beniston, 35 2011). The cost-effectiveness of snowmaking investments remains to be determined (Steiger and Mayer, 2008) as 36 well as changes in demands and behavioural adaptation. Agriculture, forestry hydropower will be also affected by 37 climate and water availability. Environmental changes may generate local conflicts of usage and modify the 38 upstream-downstream links (Beniston et al., 2010; Beniston, 2010), introducing large changes even in low lying 39 areas, especially for sectors relying on water, such as hydroelectricity, agriculture.

40 41

43

42 **23.9.** Interaction between Adaptation and Mitigation Options

Countries in Europe and the European Commission have emissions reduction strategies in place. The effectiveness
 of European mitigation policies varies by sector and by country. A major limitation has been to address emissions
 from European non-stationary sources (i.e. transport sector).

47

48 The Earth's climate is a global public good. Therefore the protection benefits due to mitigation can only be

49 compared with protection costs only at the global scale. No single country or region can justify mitigation measures

50 on economic grounds, as benefits depend on what others do (or fail to do) (Zylicz, 2010). Adaptation policies are

51 guided by different principles. Those who take adaptation measures are also usually their sole beneficiaries which

52 make conventional economic analysis applicable, providing it includes non-markets costs and benefits

53 (externalities). This section will describe policies, strategies and measures where there is good evidence regarding

mitigation/adaptation costs and benefits. Few studies have quantified directly the trade-offs/synergies- but these will
 be included, where available.

23.9.1. Agriculture, Forestry, Fisheries, Bioenergy

7 Ecosystem services such as carbon sequestration, flood protection and protection from soil erosion, are directly 8 linked to climate change, and healthy ecosystems are an essential defence against some of its most extreme impacts. 9 But soils also have an important and untapped potential in terms of mitigation. As far as agricultural soils are 10 concerned, it has been estimated that the technical potential for mitigation through optimized carbon management of 11 agricultural soils at EU-15 level is between 60–70 million tonnes CO₂ per year (EC, 2009) or between 70-190 Tg C 12 yr(-1) for continental Europe (Lal, 2008). While the level of implementation and mitigation potential of the soil and 13 land management options varies considerably from country to country, overall they have the advantage of being 14 readily available and relatively low-cost, and not requiring unproven technology. In addition, while the potential of 15 individual measures may be limited, the combined effect of several practices can make a significant contribution to 16 mitigation.

17

3 4 5

6

The European Commission's Thematic Strategy for Soil Protection recommends an indicator-based approach for monitoring soil erosion (Kibblewhite *et al.*, 2008). Defined baseline and threshold values are essential for the evaluation of soil monitoring data. Natural rates of soil formation can be used as a basis for setting tolerable soil erosion rates, with soil formation consisting of mineral weathering as well as dust deposition (Verheijen *et al.*, 2009). Different EU policies for water, waste, chemicals, industrial pollution prevention, nature protection, pesticides and agriculture are contributing to soil protection. However, as these policies have other aims and other

scopes of action, they are not sufficient to ensure an adequate level of protection for all soil in Europe. The

25 prevention of soil degradation is also limited by the scarcity of data. In this context, the European Commission

adopted a Soil Thematic Strategy (COM(2006) 231) and a proposal for a Soil Framework Directive (COM(2006)
 232) on 22 September 2006 with the objective to protect soils across the EU (EEA, 2010b). The European

Commission has put forward legislation according to which Member States would have to identify the areas at risk

29 of soil organic matter decline in their national territory. Such legislation should be would ensure a high level of soil

30 protection across the Community. This development will have the potential to enable the kind of estimation,

31 measurement or modelling of crop or grazing land management needed for accounting under Article 3.4 of the

32 Kyoto Protocol (Marmo, 2008).

33

Human impact on land use and vegetation may alter expected effects (increased fire activity and post-wildfire
erosion) arising from future climatic change. The EU Common Agricultural Policy encourages vineyard
restructuring and conversion plans (Commission Regulation EC No 1227/2000 of 31 May 2000) by subsidizing up
to 50% of the cost of soil preparation such as soil movement and land levelling. In North-East Spain, the soils of the
vineyards are significantly altered by mechanical operations which also influence soil erosion and contribute to
climate change effect through depletion of soil OM (Martinez-Casasnovas and Ramos, 2009).

40 41

42 23.9.2. Biological Conservation

43

44 Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and 45 types of protective actions. MPA networks are generally accepted as an improvement over individual MPAs to 46 address multiple threats to the marine environment. While MPA networks are considered a potentially effective 47 management approach for conserving marine biodiversity, they should be established in conjunction with other 48 management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based 49 pollution. Information about interactions between climate change and more "traditional" stressors is limited. MPA 50 managers are faced with high levels of uncertainty about likely outcomes of management actions because climate 51 change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing 52 and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing

53 stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into 54 MPA planning management and avaluation (Kallag et al. 2000). Results in a Maditerranean assets area demonstrate that the declaration of a marine reserve alone does not guarantee the sustainability of marine resources and habitats but should be accompanied with an integrated coastal management plan (Lloret and Riera, 2008).

23.9.3. Social and Health Impacts

The health co-benefits of mitigation policies are potentially large (see WGIII chapter x and WGII chapter 11). Several assessment have quantified benefits in terms of lives saved by reducing particulate air pollution, increasing housing energy efficiency and consuming less animal products.

As described above, there are several low energy housing options. Research on the benefits of various housing options (including retrofitting) have been intensively addressed in the context of low energy, healthy and sustainable housing.

14 15

1

2

3 4 5

6 7

8

9

10

16 23.9.4. Production and Infrastructure

17 18 National, regional or local strategies for greenhouse gas emission reductions typically do not take into consideration 19 the technical and economic implications that a changing climate may have on the energy resources' potential. As 20 regards energy demand, local side-effects of mitigation measures in buildings under different climatic conditions 21 have been analyzed (Jenkins et al., 2008; Jenkins, 2009). In the case of UK, the reduction of internal heat gains in 22 offices as a result of more energy efficient PCs, low energy LCD display technology, improved power management 23 and energy efficient lighting can reduce cooling requirements by up to 48% even under a 2030 warming climate (+1 24 °C compared to 2005). However, as space heating requirements would increase, the location, type and dominant 25 energy use of the building will determine its overall energy gain or loss to maintain comfort levels. When looking at 26 the broader context of urban infrastructures, despite existing efforts to include both adaptation, and mitigation, into 27 sustainable development strategies at city level (e.g. Hague, Rotterdam, Hamburg, Madrid, Manchester), priority on 28 adaptation still remains low (Carter, 2011).

29

In tourism, adaptation and mitigation may be antagonistic as in the case of artificial snowmaking in European skiing resorts, which requires significant amounts of energy and water (OECD, 2007; Perch-Nielsen, 2008). However, depending on the location and size of the resort, implications are expected to differ and thus need to be investigated on a case-by-case basis. A similar relationship between adaptation and mitigation may hold for tourist settlements in southern Europe, where expected temperature increases during the summer may require increased cooling in order to maintain tourist comfort and thus increase GHG emissions and operating costs. Interactions between adaptation and mitigation are also created by the link between tourist flows and transport.

37 38

39 23.10. Intra-Regional and Inter-Regional Issues40

The focus of this section is to analyze how climate change impacts and adaptation in different European sub-regions (intra-regional) or in neighbouring regions (inter-regional) can redistribute economic activities and migration across the European landscape. The main sectors, impacted by climate change, that can redistribute economy and people across regions are: tourism, agriculture, forestry, floods and natural disasters, public health.

45 46

47 48

7 23.10.1. Implications of Climate Change for Distribution of Economic Activity within Europe

49 (Ciscar *et al.*, 2011) showed that if the climate of the 2080s were to occur today, the annual loss in household

50 welfare in the European Union (EU) resulting from the four market impacts (agriculture, river floods, coastal areas,

51 and tourism) would range between 0.2-1%. The results show that there are large variations across European regions.

- 52 Southern Europe, the British Isles, and Central Europe North appear most sensitive to climate change. Northern
- 53 Europe, on the other hand, is the only region with net economic benefits, driven mainly by the positive effects on

1 2	agriculture. Coastal systems, agriculture, and river flooding are the most important of the four market impacts assessed.
3 4 5 6 7 8 9	In northern Europe, increases in yield and expansion of climatically suitable areas are expected to dominate, whereas disadvantages from increases in water shortage and extreme weather events (heat, drought, storms) will dominate in southern Europe. These effects may reinforce the current trends of intensification of agriculture in northern and western Europe and extensification and abandonment in the Mediterranean and south-eastern parts of Europe.(Bindi and Olesen, 2011).
10 11 12	An analysis of topoclimatic conditions for olive trees in Slovenia (Ogrin, 2007) shows that within the existing cultivated area, the capacities are sufficient to double at least the present-day olive groves, although expected extremes (including frosts) may decrease this capacity.
13 14 15 16 17 18 19 20	Impacts of climate change losses on local economies are more serious in a large-scale scenario when neighbouring provinces are also affected by drought and heat wave events. This is due to the supply-side induced price increase leading to some passing on of disaster costs to consumers (Mechler <i>et al.</i> , 2010). Growing temperatures across Europe could affect the relative quality of life in different regions which in turn could change the intensity and direction of internal migration flows (as one factor in individuals migration decision making strategy could be temperature).
21 22	23.10.2. Climate Change Impacts Outside Europe and Inter-Regional Implications
23 24 25 26 27	In an increasingly globalised world, impacts of climate change in other countries are likely to effect countries within the Europe region. Further, the region is very closely linked to its near neighbours. Countries around the Mediterreanean share similar ecologies and therefore some vulnerabilities (see Box 23-2; see also Chapter 22).
28	START BOX 23-2 HERE
29 30	Box 23-2. Climate Change Impacts in the Mediterranean
31	[to be expanded]
32 33 34 35 36 37	 Average temperature over the region is increasing in line with the global trends. Precipitation is decreasing over the region. The new generation of regional climate models (including MedSeas) confirm warming trend and drying trend under the climate scenarios for the region. Sea level estimation highly variable over the MedSea up to 15cm in the period 1987-2007. The evaluation of future sea level changes is in progress. Preliminary estimates indicate 15cm in the average but with significant with the period.
38 39 40 41 42 43	 Variability by 2100. Mediterranean ecosystems have been strongly modified from millennia of human occupation and use. Therefore, there is no "natural baseline". Climate change is only one driver of the observed trend of increasing water scarcity. Water, agriculture and "natural ecosystems" in the Mediterranean are strongly affected by the combination of drivers, with different expressions in the northern and south-eastern Mediterranean. Climate change is expected to trigger a more severe fire regime and more difficult conditions for ecosystem
44 45	restoration after fire.
43 46 47	END BOX 23-2 HERE
48	
49 50 51 52	Ine high volume of international travel increases Europe's vulnerability to invasive species, including exotic vectors of human and animal infectious diseases. In addition, transport of animals and products of animal origin has caused the spread of animal diseases, notably of Rift Valley Fever from Africa to the Arabic peninsula and of African Swine Fever from East Africa into the Caucasus region. (Conraths and Mettenleiter, 2011), as result of a study in

Germany, propose to stop using the term 'exotic' for these diseases, because infections which are today considered as 'exotic', may become established species. Important "exotic" vectors that have become established in Europe include

1 2 3	the vector Aedes albopictus (Becker, 2009) (see Section 23.5.1 above) and a novel vector of blue tongue virus (see above).
4 5 6 7 8 9 10 11 12	There are few robust studies of future climate-change related population movement either within or into the European region. Although several studies have proposed a role of climate change to increase migration pressures in low and middle income countries in the future, there is little robust information regarding the role of climate, environmental resource depletion and weather disasters in future inter-continental population movements [see chapter 12 on Human Security]. The majority of displaced persons are currently displaced either within country or in neighbouring countries. However, there is a need for some regulatory and institutional planning in EU regarding future migration (Kolmannskog and Myrstad, 2009).
13 14	23.11 Key Knowledge Gaps and Research Needs
15 16 17	There is a clear mismatch between the volume of scientific work on climate change since the AR4 and the insights and understanding required for policy needs.
18 19 20	[to be developed]
20 21 22	START BOX 23-3 HERE
23 24	Box 23-3. National Adaptation Strategies
25 26 27 28 29 30 31 32	 Rapid changes in adaptation policy have occurred since the Fourth Assessment Report, including the implementation of national policies. This box will report the results of a comparative analysis of published adaptation strategies(Biesbroek <i>et al.</i>, 2010). Comparison of adaptation plans in 29 European countries (Massey and Bergsma, 2008) Comparison of adaptation plans in Eastern Europe (Massey, 2009) Review current adaptation plans in developed countries (Berrang-Ford <i>et al.</i>, 2011) Baltic sea approaches [ASTRA project] (Hilpert <i>et al.</i>, 2007)
 33 34 35 36 37 38 39 40 41 	 The progression of the Scottish adaptation strategy will be described in more detail. The Climate Change Adaptation Framework is a national, co-ordinated approach that aimed to lead planned adaptation across all sectors to increase the resilience of Scotland's communities. The Framework is based on three pillars: Improve the understanding of the consequences of a changing climate and both the challenges and opportunities it pretends; Equip stakeholders with the sills and tools needed to adapt to changing climate; and Integrate adaptation into wider regulation and public policy so that it is a help, not a hindrance, to addressing climate change issues.
42 43 44	END BOX 23-3 HERE
45 46	References
47 48 49 50 51 52 53	 Aakre, S. and D.T.G. Rübbelke, 2010: Adaptation to climate change in the european union: Efficiency versus equity considerations. <i>Environmental Policy and Governance</i>, 20(3), 159-179. Aakre, S., I. Banaszak, R. Mechler, D. Rübbelke, A. Wreford, and H. Kalirai, 2010: Financial adaptation to disaster risk in the european union; identifying roles for the public sector. <i>Mitigation and Adaptation Strategies for Global Change</i>, 15(7), 721-736. Aerts, J., T. Sprong, and B. Bannink, 2008: Aandacht Voor Veiligheid, Leven met Water, Klimaat voor Ruimte, DG Water, 1-198 pp.

1 Affolter, P., U. Büntgen, J. Esper, A. Rigling, P. Weber, J. Luterbacher, and D. Frank, 2010: Inner alpine conifer 2 response to 20th century drought swings. European Journal of Forest Research, 129, 289-298. 3 Ainsworth, E.A., C. Beier, C. Calfapietra, R. Ceulemans, M. Durand-Tardif, G.D. Farquhar, D.L. Godbold, G.R. Hendrey, T. Hickler, J. Kaduk, D.F. Karnosky, B.A. Kimball, C. Koerner, M. Koornneef, T. Lafarge, A.D.B. 4 5 Leakey, K.F. Lewin, S.P. Long, R. Manderscheid, D.L. McNeil, T.A. Mies, F. Miglietta, J.A. Morgan, J. Nagy, 6 R.J. Norby, R.M. Norton, K.E. Percy, A. Rogers, J. Soussana, M. Stitt, H. Weigel, and J.W. White, 2008: Next 7 generation of elevated CO2 experiments with crops: A critical investment for feeding the future world. Plant 8 Cell and Environment, 31, 1317-1324 ST - Next generation of elevated CO2 ex. 9 Akyüz, K.C. and Y. Yasin Balaban, 2011: Wood fuel trade in european union. Biomass and Bioenergy, 35(4), 1588-10 1599. 11 Albert, M. and M. Schmidt, 2010: Climate-sensitive modelling of site-productivity relationships for norway spruce 12 (picea abies (L.) karst.) and common beech (fagus sylvatica L.). Forest Ecology and Management, 259, 739-13 749 ST - Climate-sensitive modelling of site-. 14 Albertson, K., J. Aylen, G. Cavan, and J. McMorrow, 2010: Climate change and the future occurrence of moorland 15 wildfires in the peak district of the UK. Climate Research, 45, 105-118. Alcamo, J., J.M. Moreno, B. Novaky, M. Bindi, R. Corobov, R.J.N. Devoy, C. Giannakopoulos, E. Martin, J.E. 16 17 Olesen, and A. Shvidenko, 2007: Contribution of Working Group II to the Fourth Assessment Report of the 18 Intergovernmental Panel on Climate Change. Climate Change 2007: Impacts, Adaptation and Vulnerability, 19 Cambridge University Press, Cambridge,. 20 Alkemade, R., M. Bakkenes, and B. Eickhout, 2011: Towards a general relationship between climate change and 21 biodiversity: An example for plant species in europe. Regional Environmental Change, 11, S143-S150. 22 Alvaro-Fuentes, J. and K. Paustian, 2011: Potential soil carbon sequestration in a semiarid mediterranean 23 agroecosystem under climate change: Quantifying management and climate effects. Plant and Soil, 338(1-2), 24 261-272. 25 Amelung, B., K. Blazejczyk, and A. Matzarakis, 2007b: Climate Change and Tourism: Assessment and Coping 26 Strategies. Maastricht - Warsaw - Freiburg, 1-226 pp. 27 Amelung, B. and A. Moreno, 2009: Impacts of Climate Change in Tourism in Europe. PESETA-Tourism Study, JRC 28 Scientific and Technical Reports, Seville, Spain, 5-55 pp. 29 Amelung, B., S. Nicholls, and D. Viner, 2007a: Implications of global climate change for tourism flows and 30 seasonality. Journal of Travel Research, 45, 285-296. 31 Amelung, B. and D. Viner, 2006: Mediterranean tourism: Exploring the future with the tourism climatic index. 32 Journal of Sustainable Tourism, 14(4), 349-366. 33 Andersen, H.E., B. Kronvang, S. Larsen, C.C. Hoffmann, T.S. Jensen, and E.K. Rasmussen, 2006: Climate-change 34 impacts on hydrology and nutrients in a danish lowland river basin. Science of the Total Environment, 365(1-3), 35 223-237. 36 Andersson, A.K. and L. Chapman, 2011a: The impact of climate change on winter road maintenance and traffic 37 accidents in west midlands, UK. Accident Analysis and Prevention, 43(1), 284-289. 38 AQEP, 2007: Third Report of the Air Quality Expert Group. Air Quality and Climate Change: A UK Perspective, 39 DEFRA, UK,. 40 Arnell, N. and E. Delaney, 2006: Adapting to climate change: Public water supply in england and wales. *Climatic* 41 Change, 78(2), 227-255. 42 Artmann, N., D. Gyalistras, H. Manz, and P. Heiselberg, 2008: Impact of climate warming on passive night cooling 43 potential. Building Research & Information, 36(2), 111-128. 44 Arzt, J., W.R. White, B.V. Thomsen, and C.C. Brown, 2010: Agricultural diseases on the move early in the third 45 millennium. Veterinary Pathology, 47(1), 15-27. 46 ASN, 2008: Annual Report. Annual Report: Nuclear Safety and Radiation Protection in France in 2008, Autorité de 47 Sureté Nucléaire, Paris, France,. 48 Åström, D., B. Forsberg, and J. Rocklöv, 2011: Heat wave impact on morbidity and mortality in the elderly 49 population: A review of recent studies. Maturitas, 69(2), 99-105. 50 Baccini, M., T. Kosatsky, A. Analitis, H.R. Anderson, M. D'Ovidio, B. Menne, P. Michelozzi, and A. Biggeri, 2011: 51 Impact of heat on mortality in 15 european cities: Attributable deaths under different weather scenarios. Journal 52 of Epidemiology and Community Health, 65(1), 64-70. 53 Bahadur Magara, S., P. Pelkonena, L. Tahvanainena, R. Toivonenb, and A. Toppinenc, 2011: Growing trade of 54 bioenergy in the EU: Public acceptability, policy harmonization, european standards and certification needs.

1 Balayla, D., T.L. Lauridsen, M. Sondergaard, and E. Jeppesen, 2010: Larger zooplankton in danish lakes after cold 2 winters: Are winter fish kills of importance? *Hydrobiologia*, **646(1)**, 159-172. 3 Baltas, E.A. and M.C. Karaliolidou, 2010: Land use and climate change impacts on the reliability of hydroelectric 4 energy production. Strategic Planning for Energy and the Environment, 29(4), 56-73. 5 Bank, M. and R. Wiesner, 2011: Determinants of weather derivatives usage in the austrian winter tourism industry. 6 *Tourism Management*, **32(1)**, 62-68. 7 Barredo, J.I., 2009: Normalised flood losses in europe: 1970-2006. Natural Hazards and Earth System Sciences. 8 **9(1)**, 97-104. 9 Barredo, J.I., 2010: No upward trend in normalised windstorm losses in europe: 1970-2008. Natural Hazards and 10 *Earth System Science*, **10(1)**, 97-104. 11 Barriopedro, D., E.M. Fischer, J. Luterbacher, R.M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: 12 Redrawing the temperature record map of europe. Science, 332(6026), 220-224. 13 Battaglini, A., G. Barbeau, M. Bindi, and F.W. Badeck, 2009: European winegrowers' perceptions of climate 14 change impact and options for adaptation. Regional Environmental Change, 9(2), 61-73. 15 Battisti, A., M. Stastny, S. Netherer, C. Robinet, A. Schopf, A. Roques, and S. Larsson, 2005: Expansion of 16 geographic range in the pine processionary moth caused by increased winter temperatures. Ecological 17 Applications, 15(6), 2084-2096. 18 Beaugrand, G., C. Luczak, and M. Edwards, 2009: Rapid biogeographical plankton shifts in the north atlantic ocean. 19 Global Change Biology, 15(7), 1790-1803. 20 Beaugrand, G., M. Edwards, and L. Legendre, 2010: Marine biodiversity, ecosystem functioning, and carbon cycles. 21 Proceedings of the National Academy of Sciences of the United States of America, 107(22), 10120-10124. 22 Beaugrand, G. and R.R. Kirby, 2010: Climate, plankton and cod. Global Change Biology, 16(4), 1268-1280. 23 Beck, C., J. Jacobeit, and P.D. Jones, 2007: Frequency and within-type variations of large-scale circulation types 24 and their effects on low-frequency climate variability in central europe since 1780. International Journal of 25 Climatology, 27(4), 473-491. Becker, N., 2009: The impact of globalization and climate change on the development of mosquitoes and mosquito-26 27 borne diseases in central europe [die rolle der globalisierung und klimaveränderung auf die entwicklung von 28 stechmücken und von ihnen übertragenen krankheiten in zentral-europa]. Umweltwissenschaften Und 29 Schadstoff-Forschung, 21(2), 212-222. 30 Beermann, M., 2011: Linking corporate climate adaptation strategies with resilience thinking. Journal of Cleaner 31 Production, 19(8), 836-842. 32 Ben, R.L. and D. Mouillot, 2008: Increasing southern invasion enhances congruence between endemic and exotic 33 mediterranean fish fauna. *Biological Invasions*, **11(3)**, 697-711. 34 Benavente, D., P. Brimblecombe, and C.M. Grossi, 2008: Salt weathering and climate change. In: New trends in 35 analytical, environmental and cultural heritage chemistry. [Colombini, M.P. and L. Tassi(eds.)]. Transworld 36 Research Network, Kerala, India, pp. 277-286. 37 Beniston, M., 2004: The 2003 heat wave in europe: A shape of things to come? an analysis based on swiss 38 climatological data and model simulations. Geophysical Research Letters, 31, 2022-2026. 39 Beniston, M., 2009: Trends in joint quantiles of temperature and precipitation in europe since 1901 and projected for 40 2100. Geophysical Research Letters, 36, 1-6. 41 Beniston, M., 2010: Climate change and its impacts: Growing stress factors for human societies. International 42 Review of the Red Cross, 92(879), 557-568. 43 Beniston, M., 2011: Impacts of climatic change on water and associated economic activities in the swiss alps. 44 Journal of Hydrology,. 45 Beniston, M., B. Uhlmann, S. Govette, and J.I. Lopez-Moreno, 2010: Will snow-abundant winters still exist in the 46 swiss alps in an enhanced greenhouse climate? International Journal of Climatology,. 47 Berg, M.P., E.T. Kiers, G. Driessen, d.H. van, B.W. Kooi, F. Kuenen, M. Liefting, H.A. Verhoef, and J. Ellers, 48 2010: Adapt or disperse: Understanding species persistence in a changing world. Global Change Biology, 16(2), 49 587-598. 50 Berrang-Ford, L., J.D. Ford, and J. Paterson, 2011: Are we adapting to climate change? Global Environmental 51 Change, 21(1), 25-33. 52 Biesbroek, G.R., R.J. Swart, T.R. Carter, C. Cowan, T. Henrichs, H. Mela, M.D. Morecroft, and D. Rey, 2010: 53 Europe adapts to climate change: Comparing national adaptation strategies. Global Environmental Change, 54 20(3), 440-450.

1 Biesmeijer, J.C., S.P.M. Roberts, M. Reemer, R. Ohlemuller, M. Edwards, T. Peeters, A.P. Schaffers, S.G. Potts, R. 2 Kleukers, C.D. Thomas, J. Settele, and W.E. Kunin, 2006: Parallel declines in pollinators and insect-pollinated 3 plants in britain and the netherlands. Science, 313(5785), 351-354. Bigler, C., O. BrĤker, H. Bugmann, M. Dobbertin, and A. Rigling, 2006: Drought as an inciting mortality factor in 4 5 scots pine stands of the valais, switzerland. *Ecosystems*, 9(3), 330-343. 6 Bindi, M. and J.E. Olesen, 2011: The responses of agriculture in europe to climate change 7 . Regional Environmental Change, 11(suppl. 1), 151-158. 8 Bindi, M. and J. Olesen, 2010: The responses of agriculture in europe to climate change. Regional Environmental 9 Change, 11, 151-158. 10 Blennow, K. and J. Persson, 2009: Climate change: Motivation for taking measure to adapt. Global Environmental 11 Change-Human and Policy Dimensions, 19, 100-104 ST - Climate change: Motivation for takin. 12 Bloom, A., V. Kotroni, and K. Lagouvardos, 2008: Climate change impact of wind energy availability in the eastern 13 mediterranean using the regional climate model PRECIS. Natural Hazards and Earth System Sciences, 8(6), 14 1249-1257. 15 Bodin, P. and B.L.B. Wiman, 2007: The usefulness of stability concepts in forest management when coping with 16 increasing climate uncertainties. Forest Ecology and Management, 242(2-3), 541-552. 17 Boldingh Debernard, J. and L. Petter Rÿed, 2008: Future wind, wave and storm surge climate in the northern seas: A 18 revisit. Tellus A. 60(3), 427-438. 19 Bonazza, A., P. Messina, C. Sabbioni, C.M. Grossi, and P. Brimblecombe, 2009a: Mapping the impact of climate 20 change on surface recession of carbonate buildings in Europe. Science of the Total Environment, 407(6), 2039-21 2050. 22 Bonazza, A., C. Sabbioni, P. Messina, C. Guaraldi, and P. De Nuntiis, 2009b: Climate change impact: Mapping 23 thermal stress on carrara marble in europe. Science of the Total Environment, 407(15), 4506-4512. 24 Both, C., S. Bouwhuis, C.M. Lessells, and M.E. Visser, 2006: Climate change and population declines in a long-25 distance migratory bird. Nature, 441(7089), 81-83. 26 Botzen, W.J.W. and J.C.J.M. van den Bergh, 2008: Insurance against climate change and flooding in the 27 netherlands: Present, future, and comparison with other countries. Risk Analysis, 28, 413-426. 28 Botzen, W.J.W., J.C.J.M. van den Bergh, and L.M. Bouwer, 2010a: Climate change and increased risk for the 29 insurance sector: A global perspective and an assessment for the netherlands. *Natural Hazards*, **52**, 577-598. 30 Botzen, W.J.W., L.M. Bouwer, and J.C.J.M. van den Bergh, 2010b: Climate change and hailstorm damage: 31 Empirical evidence and implications for agriculture and insurance. *Resource and Energy Economics*, 32(3), 32 341-362. 33 Bouwer, L.M., P. Bubeck, and J.C.J.H. Aerts, 2010: Changes in future flood risk due to climate and development in 34 a dutch polder area. Global Environmental Change, 20(3), 463-471. 35 Bouwer, L.M., J.E. Vermaat, and J.C.J.H. Aerts, 2008: Regional sensitivities of mean and peak river discharge to 36 climate variability in europe. Journal of Geophysical Research, 113, D19103. 37 Boxall, A., A. Hardy, S. Beulke, T. Boucard, L. Burgin, P.D. Falloon, P.M. Haygarth, T. Hutchinson, S. Kovats, G. 38 Leonardi, L.S. Levy, G. Nichols, S.A. Parsons, L. Potts, D. Stone, E. Topp, D.B. Turley, K. Walsh, E.M.H. 39 Wellington, and R.J. Williams, 2009: Impacts of climate change on indirect human exposure to pathogens and 40 chemicals from agriculture: Environmental Health Perspectives, 117(4), 508-514. 41 Boylan, P. and C.E. Adams, 2006: The influence of broad scale climatic phenomena on long term trends in atlantic 42 salmon population size: An example from the river foyle, ireland. Journal of Fish Biology, 68(1), 276-283. 43 Brang, P., W. Schönenberger, M. Frehner, R. Schwitter, J. Thormann, and B. Wasser, 2006: Management of 44 protection forests in the european alps: An overview. Forest, Snow and Landscape Research, 80(1), 23-44. 45 Branquart, E., K. Verheven, and J. Latham, 2008: Selection criteria of protected forest areas in europe: The theory 46 and the real world. Biological Conservation, 11(141), 2795-2806. 47 Breesch, H. and A. Janssens, 2010: Performance evaluation of passive cooling in office buildings based on 48 uncertainty and sensitivity analysis. Solar Energy, 84(8), 1453-1467. Brijs, T., D. Karlis, and G. Wets, 2008: Studying the effect of weather conditions on daily crash counts using a 49 50 discrete time-series model. Accident Analysis and Prevention, 40(3), 1180-1190. 51 Brimblecombe, P., 2010a: Climate change and cultural heritage. In: *Heritage climatology*. [Lefevre, R.-. and C. 52 Sabbioni(eds.)]. Edipuglia, Bari, Italy, pp. 49-56.

- Brimblecombe, P., 2010b: Mapping heritage climatologies. In: *Effect of climate change on built heritage*. [Bunnik,
 T., H. de Clercq, R. van Hees, H. Schellen, and L. Schueremans(eds.)]. WTA Publications, Pfaffenhofen,
- 3 Germany, pp. 18-30.
- Brimblecombe, P. and C.M. Grossi, 2008: Millennium-long recession of limestone facades in london.
 Environmental Geology, 56(3-4), 463-471.
- Brimblecombe, P. and C.M. Grossi, 2009: Millennium-long damage to building materials in london. Science of the
 Total Environment, 407(4), 1354-1361.
- Brimblecombe, P. and C.M. Grossi, 2010: Potential damage to modern building materials from 21st century air
 pollution. *The Scientific World Journal*, 10, 116-125.
- Brimblecombe, P., M.C. Grossi, and I. Harris, 2006: Climate change critical to cultural heritage. In: *Heritage weathering and conservation*. Taylor and Francis, London, UK, pp. 387-393.
- Brisson, N., P. Gate, D. Gouache, G. Charmet, F. Oury, and F. Huard, 2010: Why are wheat yields stagnating in
 europe? A comprehensive data analysis for france. *Field Crops Research*, 119(1), 201-212.
- Buestel, D., M. Ropert, J. Prou, and Goulletquer, 2009: History, status and future of oyster culture in france. *Journal of Shellfish Research*, 28(4), 813-820.
- Bulkeley, H., 2010: Cities and the governing of climate change. *Annual Review of Environment and Resources*, 35, 229-253.
- Bulleri, F. and Chapman, M.G., 2010: The introduction of coastal infrastructure as a driver of change in marine
 environments. *Journal of Applied Ecology*, 47(-), 26-35.
- Burbidge, R., A. Melrose, and A. Watt, 2010: Considering the potential impacts of climate change on air traffic
 management. In: *European Transport Conference 2010* Proceedings of Proceedings of the european transport
 conference 2010, 11-13 October 2010, Glasgow, Scotland,.
- Butterworth, M.H., M.A. Semenov, A. Barnes, D. Moran, J.S. West, and B.D.L. Fitt, 2010: North-south divide:
 Contrasting impacts of climate change on crop yields in scotland and england. *Journal of the Royal Society Interface*, 7(42), 123-130.
- Calanca, P., A. Roesch, K. Jasper, and M. Wild, 2006: Global warming and the summertime evapotranspiration
 regime of the alpine region. *Climatic Change*, **79(1-2)**, 65-78.
- Capros, P., L. Mantzos, L. Parousos, N. Tasios, G. Klaassen, and T. Van Ierland, 2011: Analysis of the EU policy
 package on climate change and renewables. *Energy Policy*, 39(3), 1-11.
- Carney, K.M., B.A. Hungate, B.G. Drake, and J.P. Megonigal, 2007: Altered soil microbial community at elevated
 CO2 leads to loss of soil carbon. *Proceedings of the National Academy of Sciences of the United States of America*, 104(12), 4990-4995.
- Carrera, A., A. Dawson, and J. Steger, 2010: Deliverable Report no.1 of the Project 'Pavement Performance and
 Remediation Requirements Following Climate Change (P2R2C2)'. State of the Art of Likely Effect of Climate
 on Current Roads. University of Nottingham (UK), Nottingham, UK,.
- Carter, J.G., 2011: Climate change adaptation in european cities. *Current Opinion in Environmental Sustainability*,
 37 3(3), 193-198.
- Casalegno, S., G. Amatulli, A. Bastrup-Birk, and T. Houston, 2007: Modelling current and future distribution of
 european forest categories, In: *Proceedings of the 6th European Conference on Ecological Modelling:*
- 40 Challenges for ecological modelling in a changing world: Global Changes, Sustainability and Ecosystem Based
 41 Management.
- 42 CEA, 2007: Reducing the Social and Economic Impact of Climate Change and Natural Catastrophes: Insurance
 43 Solutions and Public-Private Partnerships. European Commission, Brussels, Belgium, 1-48 pp.
- 44 CEA, 2009: Tackling Climate Change: The Vital Contribution of Insurers. European Commission, Brussels,
 45 Belgium, 1-64 pp.
- Cellamare, M., M. Leitao, M. Coste, A. Dutartre, and J. Haury, 2010: Tropical phytoplankton taxa in aquitaine lakes
 (france). *Hydrobiologia*, 639(1), 129-145.
- Chevalier, V., M. Pepin, L. Plee, and R. Lancelot, 2010: Rift valley fever a threat for europe? *Eurosurveillance*, 15(10), 18-28.
- 50 Chow, D.H. and G.J. Levermore, 2010: The effects of future climate change on heating and cooling demands in 51 office buildings in the UK. *Building Services Engineering Research and Technology*, **31(4)**, 307-323.
- 52 Chung, E., O. Ohtani, H. Warita, M. Kuwahara, and H. Morita, 2005: Effect of rain on travel demand and traffic
- 53 accidents. In: *Intelligent Transportation Systems, Proceedings*. 13-15 Sept 2005, pp. 1080-1083.

CIESM, 2008: N° 36 in CIESM workshop monographs. In: 1 2 Impacts of acidification on biological, chemical and physical systems in the mediterranean and black seas., 124 3 pages, 4 [- (ed.)]. [F. Briand Ed.], Monaco., pp. 124. 5 Ciscar, J., 2009: Final Report of the PESETA Research Project. Climate Change Impacts in Europe, JRC Scientific 6 and Technical Reports, 1-130 pp. 7 Ciscar, J., A. Iglesias, L. Feyen, L. Szabó, D. Van Regemorter, B. Amelung, R. Nicholls, P. Watkiss, O.B. 8 Christensen, R. Dankers, L. Garrote, C.M. Goodess, A. Hunt, A. Moreno, J. Richards, and A. Soria, 2011: 9 Physical and economic consequences of climate change in europe. Proceedings of the National Academy of 10 Sciences, 108(7), 2678-2683. 11 Clausen, N.E., P. Lundsager, R. Barthelmie, H. Holttinen, T. Laakso, and S.C. Pryor (eds.), 2007: Wind energy. In: 12 Impacts of climate change on renewable energy sources: Their role in the nordic energy system. Fenger, J., 13 Copenhagen, pp. 1-192. 14 Coeur, D. and M. Lang, 2008: Use of documentary sources on past flood events for flood risk management and land 15 planning. Comptes Rendus Geosciences, 9(340), 644-650. 16 Conraths, F.J. and T.C. Mettenleiter, 2011: Globalisation and change of climate: Growing risk for livestock 17 epidemics in germany [globalisierung und klimawandel: Steigendes risiko für tierseuchen in deutschland]. 18 Zuchtungskunde, 83(1), 21-26. 19 Corti, T., V. Muccione, P. Kollner-Heck, D. Bresch, and S.I. Seneviratne, 2009: Simulating past droughts and 20 associated building damages in france. Hydrology and Earth System Sciences Discussions, 6(2), 1463-1487. 21 Craufurd, P.Q. and T.R. Wheeler, 2009: Climate change and the flowering time of annual crops. Journal of 22 Experimental Botany, 60(9), 2529-2539. 23 Crichton, D., 2006: Climate Change and its Effects on Small Business in the UK, AXA Insurance UK, UK, 1-46 pp. 24 Crozier, M., 2010: Deciphering the effect of climate change on landslide activity: A review. Geomorphology, 124(3-25 4), 260-267. 26 Daccache, A. and N. Lamaddalena, 2010: Climate change impacts on pressurised irrigation systems. Proceedings of 27 the Institution of Civil Engineers-Engineering Sustainability, 163(2), 97-105. 28 D'Amato, G., L. Cecchi, S. Bonini, C. Nunes, I. Annesi-Maesano, H. Behrendt, G. Liccardi, T. Popov, and P. Van 29 Cauwenberge, 2007: Allergenic pollen and pollen allergy in europe. Allergy, 62(9), 976-990. 30 Dankers, R., O.B. Christensen, L. Feyen, M. Kalas, and A. de Roo, 2007: Evaluation of very high-resolution climate 31 model data for simulating flood hazards in the upper danube basin. Journal of Hydrology, 347(3-4), 319-331. 32 Dankers, R. and L. Feyen, 2008: Climate change impact on flood hazard in europe: An assessment based on high-33 resolution climate simulations. Journal of Geophysical Research, 113, D19105. 34 Daufresne, M. and P. Boet, 2007: Climate change impacts on structure and diversity of fish communities in rivers. 35 Global Change Biology, 13(12), 2467-2478. 36 Daufresne, M., K. Lengfellner, and U. Sommer, 2009: Global warming benefits the small in aquatic ecosystems. 37 Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12788-93. 38 Dawson, R., M. Dickson, R. Nicholls, J. Hall, M. Walkden, P. Stansby, M. Mokrech, J. Richards, J. Zhou, J. 39 Milligan, A. Jordan, S. Pearson, J. Rees, P. Bates, S. Koukoulas, and A. Watkinson, 2009: Integrated analysis of 40 risks of coastal flooding and cliff erosion under scenarios of long term change. Climatic Change, 95(1), 249-41 288. 42 Dawson, R.J., T. Ball, J. Werritty, A. Werritty, J.W. Hall, and N. Roche, 2011: Assessing the effectiveness of non-43 structural flood management measures in the thames estuary under conditions of socio-economic and 44 environmental change. Global Environmental Change, 21(2), 628-646. 45 Day, A.R., P.G. Jones, and G.G. Maidment, 2009: Forecasting future cooling demand in london. *Energy and* 46 Buildings, 41(9), 942-948. 47 Day, J.W. and Christian, R. R. et al., 2008: Consequences of climate change on the ecogeomorphology of coastal 48 wetlands. Estuaries and Coasts, 31(3), 477-491. 49 De Freitas, C.R., D. Scott, and G. McBoyle, 2007: A second generation climate index for tourism (CIT): 50 Specification and verification. International Journal of Biometeorology, 52(5), 399-407. 51 de Moel, H., J. van Alphen, and J.C.J.H. Aerts, 2009: Flood maps in europe - methods, availability and use. Natural 52 Hazards and Earth System Sciences, 9(2), 289-301. 53 Del Rio, S., L. Herrero, R. Fraile, and A. Penas, 2011: Spatial distribution of recent rainfall trends in spain (1961-54 2006). International Journal of Climatology, 31(5), 656-667.

- Demirel, E. (ed.), 2011: *Economic Models for Inland Navigation in the Context of Climate Change*. Diss. Ph.D., VU
 University, Amsterdam, the Netherlands,.
- Denstadli, J.M., J.K.S. Jacobsen, and M. Lohmann, 2011 (in press): Tourist perceptions of summer weather in
 scandinavia. Annals of Tourism Research,.
- Dessai, S. and M. Hulme, 2007: Assessing the robustness of adaptation decisions to climate change uncertainties: A
 case study on water resources management in the east of england. *Global Environmental Change*, 17(1), 59-72.
- Dirnböck, T., F. Essl, and W. Rabitsch, 2011: Disproportional risk for habitat loss of high-altitude endemic species
 under climate change. *Global Change Biology*, 2(17), 990-996.
- Dixon, N. and E. Brook, 2007: Impact of predicted climate change on landslide reactivation: Case study of mam tor.
 UK Landslides, 4, 137-147.
- Dobney, K., C.J. Baker, L. Chapman, and A.D. Quinn, 2010: The future cost to the united kingdom's railway
 network of heat-related delays and buckles caused by the predicted increase in high summer temperatures
 owing to climate change. *Proceedings of the Institution of Mechanical Engineers, Part FL Journal of Rail and Rapid Transit*, 224(1), 25-34.
- Dobney, K., C.J. Baker, A.D. Quinn, and L. Chapman, 2009: Quantifying the effects of high summer temperatures
 due to climate change on buckling and rail related delays in south-east united kingdom. *Meteorological Applications*, 16(2), 245-251.
- Dolinar, M., B. Vidrih, L. Kajfež-Bogataj, and S. Medvec, 2010: Predicted changes in energy demands for heating
 and cooling due to climate change. *Physics and Chemistry of the Earth*, 35(1-2), 100-106.
- Domis, L.N.D., W.M. Mooij, S. Hulsmann, van Nes E.H., and M. Scheffer, 2007: Can overwintering versus
 diapausing strategy in daphnia determine match-mismatch events in zooplankton-algae interactions? *Oecologia*,
 150(4), 682-698.
- Donat, M.G., G.C. Leckebusch, J.G. Pinto, and U. Ulbrich, 2010: European storminess and associated circulation
 weather types: Future changes deduced from a multi-model ensemble of GCM simulations. *Climate Research*,
 42(1), 27-43.
- Donat, M.G., G.C. Leckebusch, S. Wild, and U. Ulbrich, 2011: Future changes in european winter storm losses and
 extreme wind speeds inferred from GCM and RCM multi-model simulations. *Natural Hazards and Earth System Sciences*, 11(5), 1351-1370.
- Doyon, B., D. Bélanger, and P. Gosselin, 2008: The potential impact of climate change on annual and seasonal
 mortality for three cities in québec, canada. *International Journal of Health Geographics*, 7(23).
- Drenkhan, R., T. Kurkela, and M. Hanso, 2006: The relationship between the needle age and the growth rate in scots
 pine (pinus sylvestris): A retrospective analysis by needle trace method (NTM). *European Journal of Forest Research*, 125, 397-405 ST The relationship between the needle.
- Duarte Alonso, A. and M.A. O'Neill, 2011: Climate change from the perspective of spanish wine growers : A three region study. *British Food Journal*, **113(2)**, 205-221.
- Ducharne, A., 2008: Importance of stream temperature to climate change impact on water quality. *Hydrology & Earth System Sciences*, 12(3), 797-810.
- Ducharne, A., C. Baubion, N. Beaudoin, M. Benoit, G. Billen, N. Brisson, J. Garnier, H. Kieken, S. Lebonvallet, E.
 Ledoux, B. Mary, C. Mignolet, X. Poux, E. Sauboua, C. Schott, S. Thery, and P. Viennot, 2007: Long term
 prospective of the seine river system: Confronting climatic and direct anthropogenic changes. *Science of the Total Environment*, 375(1-3), 292-311.
- Durant, J.M., D.O. Hjermann, G. Ottersen, and N.C. Stenseth, 2007: Climate and the match or mismatch between
 predator requirements and resource availability. *Climate Research*, 33(3), 271-283.
- Dworak, T., B. Elbersen, K. van Diepen, I. Staritsky, D. van Kraalingen, I. Suppit, M. Berglund, T. Kaphengst, C.
 Laaser, and M. Ribeiro, 2009: Assessment of Inter-Linkages between Bioenergy Development and Water
 Availability. Ecologic. Vienna, Austria, Vienna, Austria, 139-139 pp.
- 47 EBRD, 2011: Special Report on Climate Change. the Low Carbon Transition, EBRD, London, UK, 1-60 pp.
- 48 EC, 2009: White Paper: Adapting to Climate Change: Towards a European Framework for Action,.
- 49 ECDC, 2009: Technical Report: Development of Aedes Albopictus resk Map, ECDC, Stockholm,.
- EEA, 2008: Impacts of Europe's Changing Climate? 2008 Indicator-Based Assessment, European Environment
 Agency, Copenhagen, 1-40 pp.
- 52 EEA, 2010a: Europe's Ecological Backbone: Regcognising the True Value of our Mountains, European
- 53 Environment Agency, Copenhagen,.

1	EEA, 2010b: The European Environment: State and Outlook, European Environment Agency, Copenhagen, 222-
2	EEA 2010c: FEA Technical Report Manning the Impacts of Natural Hazards and Technological Accidents in
4	Furone: An Overview of the Last Decade EEA Conenhagen
5	EEA 2011: Signals 2011 Globalisation Environment and You Office of the European Union Copenhagen
6	Denmark, 1-72 pp.
7	EEA-JRC-WHO, 2008: Impact of Europe's Changing Climate - 2008 Indicator-Based Assessment.
8	Ekeboom, J., 2007: HELCOM'S past, present and not-so-distant future } how has 30 years in operation changed one
9	of the oldest regional sea conventions? Aquatic Conserv: Mar. Freshw. Ecosyst., 17(-), 331-334.
10	Elliott, J.A. and V.A. Bell, 2011: Predicting the potential long-term influence of climate change on vendace
11	(coregonus albula) habitat in bassenthwaite lake, U.K. Freshwater Biology, 56(2), 395-405.
12	Endler, C. and A. Matzarakis, 2011: Climate and tourism in the black forest during the warm season. International
13	Journal of Biometeorology, 55(2), 173-186.
14	Endler, C., K. Oehler, and A. Matzarakis, 2011: Vertical gradient of climate change and climate tourism conditions
15	in the black forest. International Journal of Biometeorology, 54(1), 45-61.
16	Engler, R., C. Randin, W. Thuiller, S. Dullinger, N. Zimmermann, M. Araujo, P. Pearman, G. Le Lay, C. Piedallu,
17	C. Albert, P. Choler, G. Coldea, X. De Lamo, T. Dirnböck, J Gégout, D. Gomez-Garcia, J Grytnes, E.
18	Heegaard, F. Hoistad, D. Nogues-Bravo, S. Normand, M. Puscas, M Sebastian, A. Stanisci, J Theurillat, M.
19	Trivedi, P. Vittoz, and A. Guisan, 2011: 21st century climate change threatens mountain flora unequally across
20	europe. <i>Global Change Biology</i> , 17 (7), 2330-2341.
21	Eskeland, G.S. and T.K. Mideksa, 2010: Electricity demand in a changing climate. <i>Mitigation and Adaptation</i>
22	Strategies for Global Change, 15(8), 877-897.
23	Estrena, N., T.H. Sparks, and A. Menzel, 2007: Frends and temperature response in the phenology of crops in
24 25	Extralla N TH Sparks and A Menzel 2000; Effects of temperature phase type and timing location and human
25	density on plant phenological responses in europe. <i>Climate Research</i> 39 , 235-248
20	Fugenio-Martin II. and I.A. Campos-Soria 2010: Climate in the region of origin and destination choice in
28	outbound tourism demand. <i>Tourism Management</i> . 31(6) , 744-753.
29	Falk, M., 2010: A dynamic panel data analysis of snow depth and winter tourism. <i>Tourism Management</i> , 31(6) , 912-
30	924.
31	Falloon, P. and R. Betts, 2010: Climate impacts on european agriculture and water management in the context of
32	adaptation and mitigation-the importance of an integrated approach. Science of the Total Environment, 408(23),
33	5667-5687.
34	FAO, 2008: Climate Change: Implications for Food Safety, Food and Agriculture Organization, Rome, 1-49 pp.
35	Feehan, J., M. Harley, and J. Van Minnen, 2009: Climate change in europe. 1. impact on terrestrial ecosystems and
36	biodiversity. A review. Agronomy for Sustainable Development, 29(3), 409-421.
37	Ferrara, R.M., P. Trevisiol, M. Acutis, G. Rana, G.M. Richter, and N. Baggaley, 2010: Topographic impacts on
38	wheat yields under climate change: Two contrasted case studies in europe. Theoretical and Applied
39	<i>Climatology</i> , 99(1-2), 53-65.
40	Ferron, C., D. Trewick, P. Le Conte, E.R. Batard, and L. Girard, 2006: Heat stroke in hospital patients during the
41	summer 2003 heat wave: A nosocomial disease. <i>Presse Medicale</i> , 25 (2), 196-199.
42	Feyen, L., J.I. Barredo, and R. Dankers, 2009: Implications of global warming and urban land use change on
45	Jooding in europe. III.
44	economic appraisal for swigs major production. <i>Climatic Change</i> 105(3 4) 500, 528
45	Fischer L. R. Purves, C. Huggel I. Noetzli, and W. Haeberli. 2011: On the influence of geological topographic 40.
47	and glaciological factors on slope instabilities: Analyses of recent alpine rock avalanches. <i>Natural Hazards and</i>
48	Earth System Science.
49	Flannigan, M.D., B.D. Amiro, K.A. Logan, B.J. Stocks, and B.M. Wotton. 2006: Forest fires and climate change in
50	the 21ST century. Mitigation and Adaptation Strategies for Global Change, 11(4), 847-859.
51	Forkel, R. and R. Knoche, 2006: Regional climate change and its impact on photo-oxidant concentrations in
52	sourthern germany: Simulations with a coupled regional climate-chemistry model. Journal of Geophysical
53	Research -Atmospheres, 111(D12).

1 Forkel, R. and R. Knoche, 2007: Nested regional climate-chemistry simulations for central europe. Comptes Rendus 2 Geoscience, 339(11-12), 734-746. 3 Förster, H. and J. Lilliestam, 2010: Modeling thermoelectric power generation in view of climate change. Regional 4 *Environmental Change*, **10(4)**, 327-338. 5 Frei, T. and E. Gassner, 2008: Climate change and its impact on birch pollen quantities and the start of the pollen 6 season an example from switzerland for the period 1969-2006. International Journal of Biometeorology, 52(7), 7 667-674. 8 Frey, H., W. Haeberli, A. Linsbauer, C. Huggel, and F. Paul, 2010: A multi-level strategy for anticipating future 9 glacier lake formation and associated hazard potentials. Natural Hazards and Earth System Science, 10(2), 339-10 352. 11 Fuhrer, J., M. Beniston, A. Fischlin, C. Frei, S. Goyette, K. Jasper, and C. Pfister, 2006: Climate risks and their 12 impact on agriculture and forests in switzerland. Climatic Change, 79(1-2), 79-102. 13 Gambaiani, D.D., P. Mayol, and Isaac, S.J. and Simmonds, M.P., 2009: 14 Potential impacts of climate change and greenhouse gas emissions on mediterranean marine ecosystems and cetaceans Journal of the Marine Biological Association of the United Kingdom, 89(1), 179-201. 15 16 Gañán, J., A. Rahman Al-Kassir, J.F. González, A. Macías, and M.A. Diaz, 2005: Influence of the cooling 17 circulation water on the efficiency of a thermonuclear plant. Applied Thermal Engineering, 25(4), 485-494. 18 Garcia-Favos, P. and E. Bochet, 2009: Indication of antagonistic interaction between climate change and erosion on 19 plant species richness and soil properties in semiarid mediterranean ecosystems. Global Change Biology, 15(2), 20 306-318. 21 Garcia-Gonzalo, J., H. Peltola, E. Briceño-Elizondo, and S. Kellomäki, 2007: Changed thinning regimes may 22 increase carbon stock under climate change: A case study from a finnish boreal forest. Climatic Change, 81, 23 431-454. 24 García-López J.M. and C. Alluéa, 2011: Modelling phytoclimatic versatility as a large scale indicator of adaptive 25 capacity to climate change in forest ecosystems. Ecological Modelling, 222(8), 1436-1447. 26 Garcia-Mozo, H., C. Galan, P. Alcazar, C. De la Guardia, D. Nieto-Lugilde, M. Recio, P. Hidalgo, F. Gonzalez-27 Minero, L. Ruiz, and E. Dominguez-Vilches, 2010: Trends in grass pollen season in southern spain. 28 Aerobiologia, 26(2), 157-169. 29 García-Ruiz, J.M., J.I. López-Moreno, S.M. Vicente-Serrano, T. Lasanta-Martínez, and S. Baguería, 2011: 30 Mediterranean water resources in a global change scenario. Earth-Science Reviews, 105(3-4), 121-139. 31 Gardiner, B., K. Blennow, J. Carnus, P. Fleischer, F. Ingemarson, G. Landmann, M. Lindner, M. Marzano, B. 32 Nicoll, C. Orazio, J. Peyron, M. Reviron, M. Schelhaas, A. Schuck, M. Spielmann, and T. Usbeck, 2010: 33 Destructive storms in european forests: Past and forthcoming impacts. final report to european commission -34 DG environment European Forest Institute, Atlantic European Regional Office - EFIATLANTIC, Bordeaux, pp. 35 138-138. 36 Gaslikova, L., A. Schwerzmann, C.C. Raible, and T.F. Stocker, 2011: Future storm surge impacts on insurable 37 losses for the north sea region. Natural Hazards and Earth System Sciences, 11(4), 1205-1216. 38 Gehrig-Fasel, J., A. Guisan, and N.E. Zimmermann, 2007: Tree line shifts in the swiss alps: Climate change or land 39 abandonment? Journal of Vegetation Science, 18(4), 571-582. 40 Giannakopoulos, C., P. Le Sager, M. Bindi, M. Moriondo, E. Kostopoulou, and C.M. Goodess, 2009: Climatic 41 changes and associated impacts in the mediterranean resulting from a 2 °C global warming. Global and 42 Planetary Change, 68(3), 209-224. 43 Gilbert, L., 2010: Altitudinal patterns of tick and host abundance: A potential role for climate change in regulating 44 tick-borne diseases? Oecologia, 162(1), 217-225. 45 Gilgen, A.K., C. Signarbieux, U. Feller, and N. Buchmann, 2010: Competitive advantage of rumex obtusifolius L. 46 might increase in intensively managed temperate grasslands under drier climate. Agriculture Ecosystems & 47 Environment, 135(1-2), 15-23. 48 Giuggiola, A., T.M. Kuster, and S. Saha, 2010: Drought-induced mortality of scots pines at the southern limits of its 49 distribution in europe: Causes and consequences. Journal of Biogeosciences and Forestry, 3, 95-97. 50 Gonzalez-Camacho, J., J.C. Mailhol, and F. Ruget, 2008: Local impact of increasing Co2 in the atmosphere on 51 maize crop water productivity in the drome valley, france. Irrigation and Drainage, 57(2), 229-243. 52 Gordo, O. and J.J. Sanz, 2010: Impact of climate change on plant phenology in mediterranean ecosystems. Global 53 Change Biology, 16(3), 1082-1106.

1 Goyette, S., 2011: Synoptic conditions of extreme windstorms over switzerland in a changing climate. Climate 2 Dynamics, 36(5-6), 845-866. 3 Grabemann, I. and R. Weisse, 2008: Climate change impact on extreme wave conditions in the north sea: An 4 ensemble study. Ocean Dynamics, 58(3-4), 199-212. 5 Grime, J.P., J.D. Fridley, A.P. Askew, K. Thompson, J.G. Hodgson, and C.R. Bennett, 2008: Long-term resistance 6 to simulated climate change in an infertile grassland. Proceedings of the National Academy of Sciences of the 7 United States of America, 105(29), 10028-10032. 8 Grossi, C.M., P. Brimblecombe, and I. Harris, 2007: Predicting long term freeze-thaw risks on europe built heritage 9 and archaeological sites in a changing climate. Science of the Total Environment, 377(2-3), 273-281. 10 Grossi, C.M., P. Brimblecombe, and H. Lloyd, 2010: The effects of weather on visits to historic properties. Views, 11 **47**, 69-71. 12 Grossi, C.M., P. Brimblecombe, B. Mendez, D. Benavente, I. Harris, and M. Deque, 2011: Climatology of salt 13 transitions and implications for stone weathering. Science of the Total Environment, 409(13), 2577-2585. 14 Grossi, M.C., A. Bonazza, P. Brimblecombe, I. Harris, and C. Sabbioni, 2008: Predicting 21st century recession of 15 architectural limestone in european cities. Environmental Geology, 56(3-4), 455-461. 16 Haeberli, W. and R. Hohmann, 2009a: Climate, glaciers and permafrost in the swiss alps 2050: Scenarios, 17 consequences and recommendations. In: [Kane, D. and Hinkel, K. (ed.)]. 29 June 2008 - 03 July 2008, 18 University of AlaskaFairbanks, pp. 607-612. 19 Haeberli, W. and R. Hohmann, 2009b: Ninth international conference on permafrost, institute of northern 20 engineering. In: [Kane, D. and K. Hinkel(eds.)]. Proceedings of Climate, glaciers and permafrost in the swiss 21 alps 2050: Scenarios, consequences and recommendations. University of Alaska Fairbanks, pp. 607-612. 22 Hakala, K., A.O. Hannukkala, E. Huusela-Veistola, M. Jalli, and P. Peltonen-Sainio, 2011: Pests and diseases in a 23 changing climate: A major challenge for finnish crop production. Agricultural and Food Science, 20(1), 3-14. 24 Hallegatte, S., N. Ranger, O. Mestre, P. Dumas, J. Corfee-Morlot, C. Herweijer, and R. Wood, 2011: Assessing 25 climate change impacts, sea level rise and storm surge risk in port cities: A case study on copenhagen. *Climatic* 26 Change, 104(1), 113-137. 27 Hamilton, J.M. and R.S.J. Tol, 2007: The impact of climate change on tourism in germany, the UK and ireland: A 28 simulation study. Regional Environmental Change, 7(3), 161-172. 29 Hanso, M. and R. Drenkhan, 2007: Retrospective analysis of lophodermium seditiosum epidemics in estonia. Acta 30 Silvatica & Lignaria Hungarica, Special Issue, 31-45. 31 Hanson, S., R. Nicholls, N. Ranger, S. Hallegatte, J. Corfee-Morlot, C. Herweijer, and J. Chateau, 2011: A global 32 ranking of port cities with high exposure to climate extremes. *Climatic Change*, **104(1)**, 89-111. 33 Harrington, R., S.J. Clark, S.J. Welham, P.J. Verrier, C.H. Denholm, M. Hulle, D. Maurice, M.D. Rounsevell, and 34 N. Cocu, 2007: Environmental change and the phenology of european aphids. *Global Change Biology*, 13(8), 35 1550-1564. 36 Harris, C., L.U. Arenson, H.H. Christiansen, B. Etzelmüller, R. Frauenfelder, S. Gruber, W. Haeberli, C. Hauck, M. 37 Hölzle, O. Humlum, K. Isaksen, A. Kääb, M.A. Kern-Lütschg, M. Lehning, N. Matsuoka, J.B. Murton, J. 38 Nötzli, M. Phillips, N. Ross, M. Seppälä, S.M. Springman, and D.V. Mühll, 2009: Permafrost and climate in 39 europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Science 40 Reviews, 3-4(92), 117-171. 41 Harrison, G.P., L.C. Cradden, and J.P. Chick, 2008: Preliminary assessment of climate change impacts on the UK 42 onshore wind energy resource. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43 30(14), 1286-1299. 44 Harrison, P.A., M. Vandewalle, M.T. Sykes, P.M. Berry, R. Bugter, F. de Bello, C.K. Feld, U. Grandin, R. 45 Harrington, J.R. Haslett, R.H.G. Jongman, G.W. Luck, da Silva P.M., M. Moora, J. Settele, J.P. Sousa, and M. 46 Zobel, 2010: Identifying and prioritising services in european terrestrial and freshwater ecosystems. *Biodiversity* 47 and Conservation, 19(10), 2791-2821. 48 Hastings, A., J. Clifton-Brown, M. Wattenbach, P. Stampfl, C. Paul Mitchell, and P. Smith, 2008: Potential of 49 miscanthus grasses to provide energy and hence reduce greenhouse gas emissions. Agronomy for Sustainable 50 Development, 28(4), 465-472. 51 Hegland, S.J., A. Nielsen, A. Lazaro, A.L. Bjerknes, and O. Totland, 2009: How does climate warming affect plant-52 pollinator interactions? Ecology Letters, 12(2), 184-195. 53 Hein, L., M.J. Metzger, and A. Moreno, 2009: Potential impacts of climate change on tourism; a case study for 54 spain. Current Opinion in Environmental Sustainability, 1(2), 170-178.

- HELCOM, 2007: *Climate change in the baltic sea area* HELCOM thematic assessment in 2007. baltic sea
 environment proceedings. 111.
- HELCOM, 2009: Eutrophication in the baltic sea an integrated thematic assessment of the effects of nutrient
 enrichment and eutrophication in the baltic sea region: Executive summary. Baltic Sea Environmental
 Proceedings., 115A.
- Hemery, G.E., J.R. Clark, E. Aldinger, H. Claessens, M.E. Malvolti, E. O'Connor, Y. Raftoyannis, P.S. Savill, and
 R. Brus, 2010: Growing scattered broadleaved tree species in europe in a changing climate: A review of risks
 and opportunities. *Forestry*, 83(1), 65-81.
- Henderson, G.R. and D.J. Leathers, 2010: European snow cover extent variability and associations with atmospheric
 forcings. *International Journal of Climatology*, **30(10)**, 1440-1451.
- Henderson, P.A., 2007: Discrete and continuous change in the fish community of the bristol channel in response to
 climate change. *Journal of the Marine Biological Association of the UK*, 87(02), 589-589.
- Henriques, C., I.P. Holman, E. Audsley, and K. Pearn, 2008: An interactive multi-scale integrated assessment of
 future regional water availability for agricultural irrigation in east anglia and north west england. *Climatic Change*, 90(1-2), 89-111.
- Hermant, M., J. Lobry, S. Bonhommeau, J. Poulard, and O. Le Pape, 2010: Impact of warming on abundance and
 occurrence of flatfish populations in the bay of biscay (france). *Journal of Sea Research*, 64(1-2), 45-53.
- Hertel, S., A. Le Tertre, K. Jöckel, and B. Hoffmann, 2009: Quantification of the heat wave effect on cause-specific
 mortality in essen, germany. *European Journal of Epidemiology*, 24(8), 407-414.
- Hickling, R., D.B. Roy, J.K. Hill, R. Fox, and C.D. Thomas, 2006: The distributions of a wide range of taxonomic
 groups are expanding polewards. *Global Change Biology*, 12(3), 450-455.
- Hilpert, K., F. Mannke, and P. Schmidt-Thome, 2007: Developing Policies and Adaptation Strategies to Climate
 Change in the Baltic Sea Region. Towards Climate Change Adapatation Strategies in the Baltic Sea Region,
 Geological Survey of Finland, Espoo,.
- Hinkel, J., R. Nicholls, A. Vafeidis, R. Tol, and T. Avagianou, 2010: Assessing risk of and adaptation to sea-level
 rise in the european union: An application of DIVA. *Mitigation and Adaptation Strategies for Global Change*,
 15(7), 703-719.
- Hochrainer, S., J. Linnerooth-Bayer, and R. Mechler, 2010: The european union solidarity fund. *Mitigation and Adaptation Strategies for Global Change*, **15**(7), 797-810.
- Hoes, O. (ed.), 2006: Aanpak Wateroverlast in Polders Op Basis Van Risicobeheer. Technische Universiteit Delft,
 Delft, 1-188 pp.
- Holden, N.M. and A.J. Brereton, 2006: Adaptation of water and nitrogen management of spring barley and potato as
 a response to possible climate change in ireland. *Agricultural Water Management*, 82(3), 297-317.
- Holland, T. and B. Smit, 2010: Climate change and the wine industry: Current research themes and new directions.
 Journal of Wine Research, 21(2), 125-136.
- House, J.I., H.G. Orr, J.M. Clark, A. Gallego-Sala, C. Freeman, I.C. Prentice, and P. Smith, 2011: Climate change
 and the british uplands: Evidence for decision-making. *Climate Research*, 45, 3-12.
- Howden, S.M., J.F. Soussana, F.N. Tubiello, N. Chhetri, M. Dunlop, and H. Meinke, 2007: Adapting agriculture to
 climate change. *Proceedings of the National Academy of Sciences of the United States of America*, 104(50),
 19691-6.
- Hoy, A., S. Hänsel, and J. Matschullat, 2010 (in press): How can winter tourism adapt to climate change in Saxony's
 mountains? *Regional Environmental Change*,.
- Hulme, P.E., 2011: Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant
 species distributions. *New Phytologist*, **189(1)**, 272-281.
- Hunt, A. and P. Watkiss, 2011: Climate change impacts and adaptation in cities: A review of the literature. *Climatic Change*, **104(1)**, 13-49.
- Huntley, B., R.E. Green, Y.C. Collingham, and S.G. Willis, 2007: A climatic atlas of european breeding birds. pp.
 834-834pp.
- Huss, M., A. Bauder, M. Funk, and R. Hock, 2008: Determination of the seasonal mass balance of four alpine
 glaciers since 1865. *Journal of Geophysical Research*, 113(F1), 10-15.
- 51 ICES, 2010: North sea, cod in subarea IV. In: *ICES advice 2010*.
- 52 Iglesias, A., L. Garrote, F. Flores, and M. Moneo, 2007: Challenges to manage the risk of water scarcity and climate
- 53 change in the mediterranean. *Water Resources Management*, **21(5)**, 775-788.

1 Iñiguez, C., F. Ballester, J. Ferrandiz, S. Pérez-Hoyos, M. Sáez, and M. López, 2010: Relation between temperature 2 and mortality in thirteen spanish Cities 3 . International Journal of Environmental Research and Public Health, 7(8), 3196-3210. 4 Isaac, M. and D.P. van Vuuren, 2009: Modelling global residential sector energy demand for heating and air 5 conditioning in the context of climate change. Energy Policy, 37(2), 507-521. 6 Jacob, D.J. and D.A. Winner, 2009: Effect of climate change on air quality. Atmospheric Environment, 43(1), 51-63. 7 Jactel, H., B.C. Nicoll, M. Branco, J. Gonzalez-Olabarria, W. Grodzki, B. Långström, F. Moreira, S. Netherer, 8 C. Christophe Orazio, D. Piou, H. Santos, M.J. Schelhaas, K. Tojic, and F. Vodde, 2009: The influences of 9 forest stand management on biotic and abiotic risks of damage. Annals of Forest Science, 66(7), 701p1-701p18. 10 Jacxsens, L., P.A. Luning, J.G.A.J. van der Vorst, F. Devlieghere, R. Leemans, and M. Uyttendaele, 2010: 11 Simulation modelling and risk assessment as tools to identify the impact of climate change on microbiological 12 food safety-the case study of fresh produce supply chain. Food Research International, 43(7), 1925-1935. 13 Jenkins, D., Y. Liu, and A.D. Peacock, 2008: Climatic and internal factors affecting future UK office heating and 14 cooling energy consumptions. *Energy and Buildings*, **40(5)**, 874-881. 15 Jenkins, D.P., 2009: The importance of office internal heat gains in reducing cooling loads in a changing climate. 16 International Journal of Low-Carbon Technologies, 4(3), 134-140. 17 Jiguet, F., R.D. Gregory, V. Devictor, R.E. Green, P. Vorisek, A. Van Strien, and D. Couvet, 2010: Population 18 trends of european common birds are predicted by characteristics of their climatic niche. Global Change 19 Biology, 16(2), 497-505. 20 Johnk, K.D., J. Huisman, J. Sharples, B. Sommeijer, P.M. Visser, and J.M. Stroom, 2008: Summer heatwaves 21 promote blooms of harmful cyanobacteria. Global Change Biology, 14(3), 495-512. 22 Jomelli, V., D. Brunstein, D. Grancher, and P. Pech, 2007: Is the response of hill slope debris flows to recent climate 23 change univocal? A case study in the massif des ecrins (french alps). Climatic Change, 85, 119-137. 24 Jones, A., V. Stolbovoy, C. Tarnocai, G. Broll, O. Spaargaren, and L. Montanarella, 2010: Soil Atlas of the Northern 25 Circumpolar Region, Luxembourg, 142-142 pp. 26 Jonkeren, O., B. Jourquin, and P. Rietveld, 2009 (in press): Modal-split effects of climate change: The effect of low 27 water levels on the competitive position of inland waterway transport in the river rhine area. Transportation 28 Research Part A: Policy & Practice,. 29 Jonkeren, O., P. Rietveld, and J. van Ommeren, 2007: Climate change and inland waterway transport; welfare 30 effects of low water levels on the river rhine. Journal of Transport Economics and Policy, 41(3), 387-411. 31 Jonkeren, O.E. (ed.), 2009: Adaptation to Climate Change in Inland Waterway Transport. Diss. Ph.D., VU 32 University, Amsterdam, the Netherlands.,. 33 JRC-EEA, 2010: The European Environment, State and Outlook 2010, Soil, JRC Reference Report,. 34 Junginger, M., J. Van Dam, S. Zarrilli, F. Ali Mohamed, D. Marchal, and A. Faaij, 2011: Opportunities and barriers 35 for international bioenergy trade. *Energy Policy*, **39(4)**, 2028-2042. 36 Kefi, S., M. Rietkerk, C.L. Alados, Y. Puevo, V.P. Papanastasis, A. Elaich, and P. de Ruiter C., 2007: Spatial 37 vegetation patterns and imminent desertification in mediterranean arid ecosystems. Nature, 449(7159), 213-7. Karvonen, A., P. Rintamaki, J. Jokela, and E.T. Valtonen, 2010: Increasing water temperature and disease risks in 38 39 aquatic systems: Climate change increases the risk of some, but not all, diseases. International Journal for 40 Parasitology, 40(13), 1483-1488. 41 Katsman, C., A. Sterl, J. Beersma, d.B. van, J. Church, W. Hazeleger, R. Kopp, D. Kroon, J. Kwadijk, R. 42 Lammersen, J. Lowe, M. Oppenheimer, H. Plag, J. Ridley, H. von Storch, D. Vaughan, P. Vellinga, L. 43 Vermeersen, d.W. van, and R. Weisse, 2011 (in press): Exploring high-end scenarios for local sea level rise to 44 develop flood protection strategies for a low-lying delta - the netherlands as an example. Climatic Change, 1-45 29. 46 Kauserud, H., L.C. Stige, J.O. Vik, R.H. Økland, K. Høiland, and N.C. Stenseth, 2008: Mushroom fruiting and 47 climate change. Proceedings of the National Academy of Science of the United States of America, 105(10), 48 3811-3814. 49 Keller, B.D., D.F. Gleason, E. McLeod, C.M. Woodley, S. Airame, B.D. Causey, A.M. Friedlander, R. Grober-50 Dunsmore, J.E. Johnson, S.L. Miller, and R.S. Steneck, 2009: Climate change, coral reef ecosystems, and 51 management options for marine protected areas. Environmental Management, 44(6), 1069-1088. 52 Kersebaum, K.C., A.S. Nain, C. Nendel, M. Gandorfer, and M. Wegehenkel, 2008: Simulated effect of climate 53 change on wheat production and nitrogen management at different sites in germany. Journal of 54 Agrometeorology, **10**, 266-273.

- Keskitalo, E., 2008: Vulnerability and adaptive capacity in forestry in northern europe: A swedish case study.
 Climatic Change, 87(1), 219-234.
- Kibblewhite, M.G., K. Ritz, and M.J. Swift, 2008: Soil health in agricultural systems. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 363(1492), 685-701.
- Kilpeläinen, M. and H. Summala, 2007: Effects of weather and weather forecasts on driver behaviour.
 Transportation Research, 10(4), 288-299.
- Kjellström, E., G. Nikulin, U. Hansson, G. Strandberg, and A. Ullerstig, 2011: 21st century changes in the european
 climate: Uncertainties derived from an ensemble of regional climate model simulations. *Tellus*, 63A(1), 24-40.
- Klik, A. and J. Eitzinger, 2010: Impact of climate change on soil erosion and the efficiency of soil conservation
 practices in austria. *Journal of Agricultural Science*, 148, 529-541.
- Knížek, k., j. Hejtmánek, j. Jrák, p. Tomeš, p. Henry, and G. André, 2009: Neutron diffraction and heat capacity
 studies of PrCoO₃ and NdCoO₃. *The American Physical Society*, **79(13)**, ---.
- Knox, J., J. Morris, and T. Hess, 2010: Identifying future risks to UK agricultural crop production: Putting climate
 change in context. *Outlook on Agriculture*, **39(4)**, 245-248.
- Koch, H. and S. Vögele, 2009: Dynamic modeling of water demand, water availability and adaptation strategies for
 power plants to global change. *Ecological Economics*, 68(7), 2031-2039.
- Koeller, P., C. Fuentes-Yaco, T. Platt, S. Sathyendranath, A. Richards, P. Ouellet, D. Orr, U. Skuladottir, K.
 Wieland, L. Savard, and M. Aschan, 2009: Basin-scale coherence in phenology of shrimps and phytoplankton
 in the north atlantic ocean. *Science*, 324(5928), 791-793.
- Koetse, M.J. and P. Rietveld, 2009: The impact of climate change and weather on transport: An overview of
 empirical findings. *Transportation Research*, 14(3), 205-221.
- Kolmannskog, V., Myrstad, F., 2009: Environmental displacement in european asylum law. *European Journal of Migration and Law*, **11(4)**, 313-326.
- Komatsuzaki, M. and H. Ohta, 2007: Soil management practices for sustainable agro-ecosystems. *Sustainability Science*, 2(1), 103-120.
- Kopytko, N. and J. Perkins, 2011: Climate change, nuclear power and the adaptation-mitigation dilemma. *Energy Policy*, **39**, 318-333-333.
- Kovats, R.S. and S. Hajat, 2008: Heat stress and public health: A critical review. *Annual Review of Public Health*,
 29, 41-55.
- Krasuska, E., C. Cadórniga, J.L. Tenorio, G. Testa, and D. Scordia, 2010: Potential land availability for energy crops
 production in europe. *Biofuels, Bioproducts & Biorefining*, 4(6), 658-673.
- Krekt, A.H., T.J. van der Laan, R.A.E. van der Meer, B. Turpijn, O.E. Jonkeren, A. van der Toorn, E. Mosselman, J.
 van Meijeren, and T. Groen, 2011: *Climate Change and Inland Waterway Transport: Impacts on the Sector, the Port of Rotterdam and Potential Solutions*, Kennis voor Klimaat, Netherlands,.
- Kriegler, E., B.C. O'Neill, S. Hallegatte, T. Kram, R.H. Moss, R. Lempert, and T.J. Wilbanks, 2010: Socio *Economic Scenario Development for Climate Change Analysis*, CIRED Working Paper,.
- Kundzewicz, Z., Y. Hirabayashi, and S. Kanae, 2010a: River floods in the changing ClimateóObservations and
 projections. *Water Resources Management*, 24(11), 2633-2646.
- Kundzewicz, Z., N. Lugeri, R. Dankers, Y. Hirabayashi, P. Döll, I. Pinskwar, T. Dysarz, S. Hochrainer, and P.
 Matczak, 2010b: Assessing river flood risk and adaptation in europe review of projections for the future.
 Mitigation and Adaptation Strategies for Global Change, 15(7), 641-656.
- Ladanyi, M., 2008: Risk methods and their applications in agriculture. *Applied Ecology and Environmental Research*, 6(1), 147-164.
- Lake, I.R., I.A. Gillespie, G. Bentham, G.L. Nichols, C. Lane, G.K. Adak, and E.J. Threlfall, 2009: A re-evaluation
 of the impact of temperature and climate change on foodborne illness. *Epidemiology and Infection*, 137(11),
 1538-1547.
- Lal, R., 2008: Soil carbon stocks under present and future climate with specific reference to european ecoregions.
 Nutrient Cycling in Agroecosystems, 81(2), 113-127.
- Lange, M., 2010: The GHG Balance of Biofuels Taking into Account Land use Change, Kiel Institute for the World
 Economy, Germany, 1-37 pp.
- 51 Lankester, P. and P. Brimblecombe, 2010: Predicting future indoor climate at knole. *Views*, **47**, 71-73.
- 52 Larsen, P., S. Goldsmith, O. Smith, M. Wilson, K. Strzepek, P. Chinowsky, and B. Saylor, 2008: Estimating future
- 53 costs for alaska public infrastructure at risk from climate change. *Global Environmental Change*, **18(3)**, 442-
- 54 457.

- Lavalle, C., F. Micale, T.D. Houston, C. Andrea, R. Hiederer, C. Lazar, C. Conte, G. Amatulli, and G. Genovese,
 2009a: Climate change in europe. 3. impact on agriculture and forestry. A review. *Agronomy for Sustainable Development*, 29(3), 433-446.
- Lavalle, C., F. Micale, T.D. Houston, A. Camia, R. Hiederer, C. Lazar, C. Conte, G. Amatulli, and G. Genovese,
 2009b: Climate change in europe. 3. impact on agriculture and forestry. A review. *Agronomy for Sustainable Development*, 29(3), 433-446.
- Lazaridis, M., M. Latos, V. Aleksandropoulou, Ø. Hov, A. Papayannis, and K. Tørseth, 2008: Contribution of forest
 fire emissions to atmospheric pollution in greece. *Air Quality, Atmosphere & Health*, 1(3), 143-158.
- Le Floc'h, P., J.C. Poulard, O. Thebaud, F. Blanchard, J. Bihel, and F. Steinmetz, 2008: Analyzing the market
 position of fish species subject to the impact of long-term changes: A case study of french fisheries in the bay of
 biscay. Aquatic Living Resources, 21(3), 307-316.
- Leander, R., T.A. Buishand, B.J.J.M. van den Hurk, and M.J.M. de Wit, 2008: Estimated changes in flood quantiles
 of the river meuse from resampling of regional climate model output. *Journal of Hydrology*, **351**(3-4), 331-343.
- Leckebusch, G.C., A. Weimer, J.G. Pinto, M. Reyers, and P. Speth, 2008: Extreme wind storms over europe in
 present and future climate: A cluster analysis approach. *Meteorologische Zeitschrift*, 17(1), 67-82.
- Leckebusch, G.C., U. Ulbrich, L. Fröhlich, and J.G. Pinto, 2007: Property loss potentials for european midlatitude
 storms in a changing climate. *Geophysical Research Letters*, 34(5), L05703.
- Lee, H.C., R. Walker, S. Haneklaus, L. Philips, G. Rahmann, and E. Schnug, 2008: Organic farming in europe: A
 potential major contribution to food security in a scenario of climate change and fossil fuel depletion.
 Landbauforschung Volkenrode, 58(3), 145-151.
- Lejeusne, C., P. Chevaldonne, C. Pergent-Martini, and Boudouresque, C.F. and Pe'rez, T., 2009:
 Climate change effects on a miniature ocean: The highly diverse, highly impacted mediterranean sea. *Trends in Ecology and Evolution*, 25(4).
- Lenderink, G., A. Buishand, and W. Van Deursen, 2007: Estimates of future discharges of the river rhine using two
 scenario methodologies: Direct versus delta approach. *Hydrology and Earth System Sciences*, **11**(3), 1145-1159.
- Lenoir, J., J.C. Gegout, P.A. Marquet, P. de Ruffray, and H. Brisse, 2008: A significant upward shift in plant species
 optimum elevation during the 20th century. *Science*, 320(5884), 1768-1771.
- Linard, C., N. Poncon, D. Fontenille, and E.F. Lambin, 2009: Risk of malaria reemergence in southern france:
 Testing scenarios with a multiagent simulation model. *Eohealth*, 6(1), 135-147.
- Linde te, A., 2005: *Effect of climate change on the rivers rhine and meuse*. In: *Lowland River Rehabilitation Conference* [Schweizerbart, S., Allemagne (ed.)]. Wageningen, The Netherlands, pp. 53-61.
- Lindgren, J., D.K. Johnsson, and A. Carlsson-Kanyama, 2009: Climate adaptation of railways: Lessons from
 sweden. *European Journal of Transport and Infrastructure Research*, 9(2), 164-181.
- Lindner, M., M. Maroschek, S. Netherer, A. Kremer, A. Barbati, J. Garcia-Gonzalo, R. Seidl, S. Delzon, P. Corona,
 M. Kolström, M.J. Lexer, and M. Marchetti, 2010: Climate change impacts, adaptive capacity, and vulnerability
 of european forest ecosystems. *Forest Ecology and Management*, 259(4), 698-709.
- Lindner, M., 2007: How to adapt forest management in response to the challenges of climate change? In: [Koskela,
 J., A. Buck, and T.d. Cros(eds.)]. pp. 31-42.
- Lindsay, S.W., D.G. Hole, R.A. Hutchinson, S.A. Richards, and S.G. Willis, 2010: Assessing the future threat from
 vivax malaria in the united kingdom using two markedly different modelling approaches. *Malaria Journal*,
 9(1), 70-78.
- Linkosaloa, T., R. Häkkinenb, J. Terhivuoc, H. Tuomenvirtad, and Haria P., 2009: The time series of flowering and
 leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming.
 Agricultural and Forest Meteorology, 149(3-4), 453-461.
- Linnerud, K., T.H. Mideska, and G.S. Eskeland, 2011: The impact of climate change on nuclear power supply. *The Energy Journal*, 32(1), 149-168.
- Lionello, P., M.B. Galati, and E. Elvini, Extreme storm surge and wind wave climate scenario simulations at the
 venetian littoral. *Physics and Chemistry of the Earth, Parts A/B/C*, In Press, Corrected Proof.
- Lloret, J. and V. Riera, 2008: Evolution of a mediterranean coastal zone: Human impacts on the marine environment
 of cape creus. *Environmental Management*, 42(6), 977-988.
- Lobell, D.B., W. Schlenker, and J. Costa-Roberts, 2011: Climate trends and global crop production since 1980.
 Science.
- Lonsdale, K., T. Downing, R. Nicholls, D. Parker, A. Vafeidis, R. Dawson, and J. Hall, 2008: Plausible responses to
 the threat of rapid sea-level rise in the thames estuary. *Climatic Change*, 91(1), 145-169.

- Lopez-Moreno, J.I., S. Goyette, and M. Beniston, 2008: Climate change prediction over complex areas: Spatial
 variability of uncertainties and predictions over the pyrenees from a set of regional climate models.
 International Journal of Climatology, 28(11), 1535-1550.
- López-Moreno, J., S. Goyette, and M. Beniston, 2009: Impact of climate change on snowpack in the pyrenees:
 Horizontal spatial variability and vertical gradients. *Journal of Hydrology*, 374(3-4), 384-396.
- Luck, J., M. Spackman, A. Freeman, P. Trebicki, W. Griffiths, K. Finlay, and S. Chakraborty, 2011: Climate change
 and diseases of food crops. *Plant Pathology*, 60(1), 113-121.
- Lugeri, N., Z. Kundzewicz, E. Genovese, S. Hochrainer, and M. Radziejewski, 2010: River flood risk and adaptation
 in europeóassessment of the present status. *Mitigation and Adaptation Strategies for Global Change*, 15(7),
 621-639.
- Luo, Z., E. Wang, and O.J. Sun, 2010: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta analysis of paired experiments. *Agriculture, Ecosystems & Environment*, 139(1-2), 224-231.
- Maaskant, B., S.N. Jonkman, and L.M. Bouwer, 2009: Future risk of flooding: An analysis of changes in potential
 loss of life in south holland (the netherlands). *Environmental Science & Policy*, 12(2), 157-169.
- Mackenzie, B.R., H. Gislason, C. Mollmann, and F.W. Koster, 2007: Impact of 21st century climate change on the
 baltic sea fish community and fisheries. *Global Change Biology*, 13(7), 1348-1367.
- Maclean, I.M.D., G.E. Austin, M.M. Rehfisch, J. Blew, O. Crowe, S. Delany, K. Devos, B. Deceuninck, K. Günther,
 K. Laursen, M. Van Roomen, and J. Wahl, 2008: Climate change causes rapid changes in the distribution and
 site abundance of birds in winter. *Global Change Biology*, 14(11), 2489-2500.
- Madgwick, J.W., J.S. West, R.P. White, M.A. Semenov, J.A. Townsend, J.A. Turner, and B.D.L. Fitt, 2011: Impacts
 of climate change on wheat anthesis and fusarium ear blight in the UK. *European Journal of Plant Pathology*,
 130(1), 117-131.
- Makkonen, L., L. Ruokolainen, J. Raisanen, and M. Tikanmaki, 2007: Regional climate model estimates for changes
 in nordic extreme events. *Geophysica*, 43(1-2), 19-42.
- Malçaa, J. and F. Freirea, 2011: Life-cycle studies of biodiesel in europe: A review addressing the variability of
 results and modeling issues. *Renewable and Sustainable Energy Reviews*, 15(1), 338-351.
- Malheiro, A.C., J.A. Santos, H. Fraga, and J.G. Pinto, 2010: Climate change scenarios applied to viticultural zoning
 in europe. *Climate Research*, 43, 163-177.
- Manojlovic, N. and E. Pasche, 2008: Integration of resiliency measures into flood risk management concepts of
 communities. In: *Flood recovery, innovation and response*. [Proverbs, D., C.A. Brebbia, and E. Penning Roswell(eds.)]. WIT Press, pp. 235-245.
- Marcais, B. and M. Desprez-Loustau, 2007: Has climatic warming had an effect on forest diseases? TT le
 rechauffement climatique a-t-il un impact sur les maladies forestieres? *RenDez-Vous Techniques*, 47-52 ST Has climatic warming had an effect on.
- Marcos-Lopez, M., P. Gale, B.C. Oidtmann, and E.J. Peeler, 2010: Assessing the impact of climate change on
 disease emergence in freshwater fish in the united kingdom. *Transboundary and Emerging Diseases*, 57(5),
 293-304.
- Marker, M., L. Angeli, L. Bottai, R. Costantini, R. Ferrari, L. Innocenti, and G. Siciliano, 2008: Assessment of land
 degradation susceptibility by scenario analysis: A case study in southern tuscany, italy. *Geomorphology*, 93(1 2), 120-129.
- Marmo, L., 2008: EU strategies and policies on soil and waste management to offset greenhouse gas emissions.
 Waste Management, 28(4), 685-689.
- Martinez-Casasnovas, J. and M.C. Ramos, 2009: Soil alteration due to erosion, ploughing and levelling of vineyards
 in north east spain. *Soil use and Management*, 25(2), 183-192.
- Massey, E.E., 2009: Adaptation Policy and Procedures in Central & Eastern Europe, Institute for Environmental
 Studies,.
- Massey, E.E. and E. Bergsma, 2008: Assessing Adaptation in 29 European Countries, Institute for Environmental
 Studies,.
- Matzarakis, A., 2007: Developments in Tourism Climatology. Assessment Method for Climate and Tourism Based
 on Daily Data, Freiburg, 52-58 pp.
- Matzarakis, A. and B. Tinz, 2008: Tourismus an der küste sowie in mittel und hochgebirge: Gewinner und verlierer.
 Warnsignal Klima: Gesundheitsrisiken Gefahren Für Menschen, Tiere Und Pflanzen, 247-252.
- Mauser, W. and H. Bach, 2009: PROMET-large scale distributed hydrological modelling to study the impact of
 climate change on the water flows of mountain watersheds. *Journal of Hydrology*, 376(3-4), 362-377.

- McHugh, M., 2007: Short-term changes in upland soil erosion in england and wales: 1999 to 2002. *Geomorphology*, 86(1-2), 204-213.
 No. 141 Structure and Additional Addition
- Mechler, R., S. Hochrainer, A. Aaheim, H. Salen, and A. Wreford, 2010: Modelling economic impacts and
 adaptation to extreme events: Insights from european case studies. *Mitigation and Adaptation Strategies for Global Change*, 15(7), 737-762.
- Meleux, F., F. Solmon, and F. Giorgi, 2007: Increase in summer european ozone amounts due to climate change.
 Atmospheric Environment, 41(35), 7577-7587.
- Mellor, P.S., S. Carpenter, L. Harrup, M. Baylis, and P.P.C. Mertens, 2008: Bluetongue in europe and the
 mediterranean basin: History of occurrence prior to 2006. *Preventive Veterinary Medicine*, 87(1-2), 4-20.
- Merz, B., A.H. Thieken, and M. Gocht, 2007: Flood risk mapping at the local scale: Concepts and challenges. In:
 Flood risk management in europe. [Begum, S., M.J.F. Stive, and J.W. Hall(eds.)]. Springer Netherlands, pp. 231-251.
- Metzger, M.J., M.D.A. Rounsevell, L. Acosta-Michlik, R. Leemans, and D. Schroter, 2006: The vulnerability of
 ecosystem services to land use change. *Agriculture, Ecosystems & Environment*, **114(1)**, 69-85.
- Metzger, M.J., D. Schroter, R. Leemans, and W. Cramer, 2008: A spatially explicit and quantitative vulnerability
 assessment of ecosystem service change in europe. *Regional Environmental Change*, 8(3), 91-107.
- Metzger, M.J., R.G.H. Bunce, R.H.G. Jongman, C.A. Mücher, and J.W. Watkins, 2005: A climatic stratification of
 the environment of europe. *Global Ecology and Biogeography*, 14(6), 549-563.
- Mideksa, T.K. and S. Kallbekken, 2010: The impact of climate change on the electricity market: A review. *Energy Policy*, 38(7), 3579-3585.
- Mieszkowska, N., M.J. Genner, S.J. Hawkins, and D.W. Sims, 2009: Chapter 3. effects of climate change and
 commercial fishing on atlantic cod gadus morhua. *Advances in Marine Biology*, 56, 213-73.
- Millar, C.I., N.L. Stephenson, and S.L. Stephens, 2007: Climate change and forests of the future: Managing in the
 face of uncertainty. *Ecological Applications*, **17(8)**, 2145-2151.
- Miller, K., A. Charles, M. Barange, K. Brander, V.F. Gallucci, M.A. Gasalla, A. Khan, G. Munro, R. Murtugudde,
 R.E. Ommer, and R.I. Perry, 2010: Climate change, uncertainty, and resilient fisheries: Institutional responses
 through integrative science. *Progress in Oceanography*, 87(1-4), 338-346.
- Miraglia, M., H.J.P. Marvin, G.A. Kleter, P. Battilani, C. Brera, E. Coni, F. Cubadda, L. Croci, B. De Santis, S.
 Dekkers, L. Filippi, R.W.A. Hutjes, M.Y. Noordam, M. Pisante, G. Piva, A. Prandini, L. Toti, van den Born
 G.J., and A. Vespermann, 2009: Climate change and food safety: An emerging issue with special focus on
 europe. *Food and Chemical Toxicology*, 47(5), 1009-1021.
- Mirasgedis, S., Y. Sarafidis, E. Georgopoulou, V. Kotroni, K. Lagouvardos, and D.P. Lalas, 2007: Modelling
 framework for estimating impacts of climate change on electricity demand at regional level: Case of greece.
 Energy Conversion and Management, 48(5), 1737-1750.
- Moiseyev, A., B. Solberg, A.M. Kallio, and M. Lindner, 2011: An economic analysis of the potential contribution of
 forest biomass to the EU RES target and its implications for the EU forest industries. *Journal of Forest Economics*, 17(2), 197-213.
- Mokrech, M., R. Nicholls, J. Richards, C. Henriques, I. Holman, and S. Shackley, 2008: Regional impact assessment
 of flooding under future climate and socio-economic scenarios for east anglia and north west england. *Climatic Change*, 90(1), 31-55.
- Montoya, J.M. and D. Raffaelli, 2010: Climate change, biotic interactions and ecosystem services. *Philosophical Transactions of the Royal Society of London.Series B, Biological Sciences*, 365(1549), 2013-8.
- 43 Mooij de, R. and P. Tang, 2003: *Four Futures of Europe*, Centraal Planbureau, 1-220 pp.
- Mooij, W.M., L. Domis, and S. Hulsmann, 2008: The impact of climate warming on water temperature, timing of
 hatching and young-of-the-year growth of fish in shallow lakes in the netherlands. *Journal of Sea Research*,
 60(1-2), 32-43.
- 47 Moore, B. and G. Allard, 2008: Climate Change Impacts on Forest Health, Rome Italy, 38-38 pp.
- Moreno, A., 2010: Mediterranean tourism and climate (change): A survey-based study. *Tourism and Hospitality Planning & Development*, 7(3), 253-265.
- Moreno, A. and B. Amelung, 2009: Climate change and tourist comfort on Europe's beaches in summer: A
 reassessment. *Coastal Management*, 37(6), 550-568.
- Moreno, A., B. Amelung, and L. Santamarta, 2009: Linking beach recreation to weather conditions: A case study in
 zandvoort, netherlands. *Tourism in Marine Environments*, 5(2-3), 111-119.

- 1 Moriondo, M., M. Bindi, C. Fagarazzi, R. Ferrise, and G. Trombi, 2010a: Framework for high-resolution climate
- 2 change impact assessment on grapevines at a regional scale. *Regional Environmental Change*,.
- Moriondo, M., M. Bindi, Z.W. Kundzewicz, M. Szwed, A. Chorynski, P. Matczak, M. Radziejewski, D. McEvoy,
 and A. Wreford, 2010b: Impact and adaptation opportunities for european agriculture in response to climatic
 change and variability. *Mitigation and Adaptation Strategies for Global Change*, 15(7), 657-679.
- Moriondo, M., C. Pacini, G. Trombi, C. Vazzana, and M. Bindi, 2010c: Sustainability of dairy farming system in
 tuscany in a changing climate. *European Journal of Agronomy*, 32(1), 80-90.
- Musshoff, O., M. Odening, and W. Xu, 2011: Management of climate risks in agriculture will weather derivatives
 permeate? *Applied Economics*, 43(9), 1067-1077.
- Mustonen, T. and K. Mustonen, 2011a: Drowning reindeers, drowning homes indigenous saami and
 hydroelectricity in sompio, finland. Snowchange Cooperative, Finland,.
- 12 Mustonen, T. and K. Mustonen, 2011b: *Eastern sámi atlas*. Snowchange Cooperative, Finland, pp. 334.
- 13 Nageleisen, L.M., 2008: Actualites Sur Les derissements [..] 2006, 7-7 pp.
- Nair, P.K.R., B.M. Kumar, and V.D. Nair, 2009: Agroforestry as a strategy for carbon sequestration. *Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde*, **172(1)**, 10-23.
- Najac, J., C. Lac, and L. Terray, 2011: Impact of climate change on surface winds in france using a statistical dynamical downscaling method with mesoscale modelling. *International Journal of Climatology*, 31(3), 415 430.
- Narita, D., R.S.J. Tol, and D. Anthoff, 2010: Economic costs of extratropical storms under climate change: An
 application of FUND. *Journal of Environmental Planning and Management*, 53(3), 371-384.
- Nesje, A., J. Bakke, S.O. Dahl, L. Øyvind, and J.A. Matthews, 2008: Norwegian mountain glaciers in the past,
 present and future. *Global and Planetary Change*, 60(1-2), 10-27.
- Netherer, S. and A. Schopf, 2009: Potential effects of climate change on insect herbivores in european forests general aspects and the pine processionary moth as specific example. *Forest Ecology and Management*, 259, 831-838.
- Nicholls, S. and B. Amelung, 2008: Climate change and tourism in northwestern europe: Impacts and adaptation.
 Tourism Analysis, 13(1), 21-31.
- Nicholls, R., P. Wong, V. Burkett, C. Woodroffe, and J. Hay, 2008: Climate change and coastal vulnerability
 assessment: Scenarios for integrated assessment. *Sustainability Science*, 3(1), 89-102.
- Noges, P.N., T. Noges, M. Ghiani, F. Sena, R. Fresner, M. Friedl, and J. Mildner, 2011: Increased nutrient loading
 and rapid changes in phytoplankton expected with climate change in stratified south european lakes: Sensitivity
 of lakes with different trophic state and catchment properties. *Hydrobiologia*, 667(1), 255-270.
- OECD, 2007: Climate Change in the European Alps: Adapting Winter Tourism and Natural Hazards Management.
 Climate Change in the European Alps, OECD, Paris, France, 1-136 pp.
- Ogrin, D., 2007: Olive growing in slovenian istria and climatic limitations to its development. *Moravian Geographical Reports*, 15(3), 34-40.
- Olesen, J.E., M. Trnka, K.C. Kersebaum, A.O. Skjelvåg, B. Seguin, P. Peltonen-Sainio, F. Rossi, J. Kozyra, and F.
 Micale, 2011: Impacts and adaptation of european crop production systems to climate change. *European Journal of Agronomy*, 34(2), 96-112.
- Olsthoorn, X., P. van der Werff, L. Bouwer, and D. Huitema, 2008: Neo-atlantis: The netherlands under a 5-m sea
 level rise. *Climatic Change*, 91(1), 103-122.
- 42 OSPAR, 2010: Chapter 12: Regional summaries. In: Quality status report. pp. 150-161.
- Osterblom, H., A. Gardmark, L. Bergstrom, B. Muller-Karulis, C. Folke, M. Lindegren, M. Casini, P. Olsson, R.
 Diekmann, T. Blenckner, C. Humborg, and C. Mollmann, 2010: Making the ecosystem approach operationalcan regime shifts in ecological- and governance systems facilitate the transition? *Marine Policy*, 34(6), 1290-1299.
- Overmars, K.P., E. Stehfest, J.P.M. Ros, and A. Gerdien Prins, 2011: Indirect land use change emissions related to
 EU biofuel consumption. *Environmental Science and Policy*, 14, 248-257.
- 49 Paerl, H.W. and J. Huisman, 2009: Climate change: A catalyst for global expansion of harmful cyanobacterial
 50 blooms. *Environmental Microbiology Reports*, 1(1), 27-37.
- 51 Pahl-Wostl, C., 2007: Transitions towards adaptive management of water facing climate and global change. *Water*
- 52 *Resources Management*, **21**(1), 49-62.

- Pall, P., T. Aina, D.A. Stone, P.A. Stott, T. Nozawa, A.G.J. Hilberts, D. Lohmann, and M.R. Allen, 2011:
 Anthropogenic greenhouse gas contribution to flood risk in england and wales in autumn 2000. *Nature*,
 470(7334), 382-385.
 Paterson, R.R.M. and N. Lima, 2010: How will climate change affect mycotoxins in food? *Food Research*
- Paterson, R.R.M. and N. Lima, 2010: How will climate change affect mycotoxins in food? *Food Research International*, 43(7), 1902-1914.
- Pejovic, T., V.A. Williams, R.B. Noland, and R. Toumi, 2009: Factors affecting the frequency and severity of
 airport weather delays and the implications of climate change for future delays. *Transportation Research Record*, 2139, 97-106.
- Peltonen-Sainio, P., L. Jauchinen, and K. Hakala, 2010: Crop responses to temperature and precipitation according
 to long-term multi-location trials at high-latitude conditions. *The Journal of Agricultural Science*, **149(01)**, 49 62.
- Peltonen-Sainio, P., L. Jauhiainen, and I.P. Laurila, 2009: Cereal yield trends in northern european conditions:
 Changes in yield potential and its realisation. *Field Crops Research*, **110**(1), 85-90.
- Perch-Nielsen, S.L. (ed.), 2008: *Climate Change and Tourism Intertwined*. Diss. PhD, Eidgenössische Technische
 Hochschule Zürich, Zürich, 4-102 pp.
- Perch-Nielsen, S.L., B. Amelung, and R. Knutti, 2010: Future climate resources for tourism in europe based on the
 daily tourism climatic index. *Climatic Change*, 103(3-4), 363-381.
- Perez, F.F., X.A. Padin, Y. Pazos, M. Gilcoto, M. Cabanas, P.C. Pardo, M.D. Doval, and L. Farina-Busto, 2010:
 Plankton response to weakening of the iberian coastal upwelling. *Global Change Biology*, 16(4), 1258-1267.
- Perry, I.A., R. Ommer, K. Cochrane, and P. Cury, 2011: World fisheries. Wiley-Blackwell, Oxford, UK, pp. 148 148.
- Perry, R.I., R.E. Ommer, M. Barange, and F. Werner, 2010: The challenge of adapting marine social-ecological
 systems to the additional stress of climate change. *Current Opinion in Environmental Sustainability*, 2(5-6),
 356-363.
- Petrow, T., B. Merz, K.E. Lindenschmidt, and A.H. Thieken, 2007: Aspects of seasonality and flood generating
 circulation patterns in a mountainous catchment in south-eastern germany. *Hydrology and Earth System Sciences*, 11, 1455-1468.
- Petrow, T., J. Zimmer, and B. Merz, 2009: Changes in the flood hazard in germany through changing frequency and
 persistence of circulation patterns. *Natural Hazards and Earth System Sciences*, 9(4), 1409-1423.
- Petrow, T., A. Thieken, H. Kreibich, B. Merz, and C. Bahlburg, 2006: Improvements on flood alleviation in
 germany: Lessons learned from the elbe flood in august 2002. *Environmental Management*, 38(5), 717-732.
- Philippart, C.J.M., R. Anadón, R. Danovaro, J.W. Dippner, K.F. Drinkwater, S.J. Hawkins, T. Oguz, G. O'Sullivan,
 and P.C. Reid, 2011: Impacts of climate change on european marine ecosystems: Observations, expectations
 and indicators, J. Exp. Mar. Biol. Ecol.,.
- Pilli-Sihlova, K., P. Aatola, M. Ollikainen, and H. Tuomenvirta, 2010: Climate change and electricity consumption witnessing increasing or decreasing use and costs? *Energy Policy*, 38(5), 2409-2419.
- Pinto, J.G., C.P. Neuhaus, G.C. Leckebusch, M. Reyers, and M. Kerschgens, 2010: Estimation of wind storm
 impacts over western germany under future climate conditions using a statistical-dynamical downscaling
 approach. *Tellus*, 62(2), 188-201.
- Pinto, J.G., U. Ulbrich, G.C. Leckebusch, T. Spangehl, M. Reyers, and S. Zacharias, 2007a: Changes in storm track
 and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. *Climate Dynamics*, 29(2-3), 195-210.
- Pinto, J.G., E.L. Fröhlich, G.C. Leckebusch, and U. Ulbrich, 2007b: Changing european storm loss potentials under
 modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. *Natural Hazards and Earth System Sciences*, 7(1), 165-175.
- Pitois, S.G. and C.J. Fox, 2006: Long-term changes in zooplankton biomass concentration and mean size over the
 northwest european shelf inferred from continuous plankton recorder data. *ICES Journal of Marine Science*,
 63(5), 785-798.
- Planque, B., J. Fromentin, P. Cury, K.F. Drinkwater, S. Jennings, R.I. Perry, and S. Kifani, 2010: How does fishing
 alter marine populations and ecosystems sensitivity to climate? *Journal of Marine Systems*, **79(3-4)**, 403-417.
- Polemio, M. and O. Petrucci, 2010: Occurrence of landslide events and the role of climate in the twentieth century in
 calabria, southern italy. *Quarterly Journal of Engineering Geology and Hydrogeology*, 43, 403-415.
- Pons, M.R., D. San-Martin, S. Herrera, and J.M. Gutierrez, 2010: Snow trends in northern spain: Analysis and
 simulation with statistical downscaling methods. *International Journal of Climatology*, 30(12), 1795-1806.

- Popov Janevska, D., R. Gospavic, E. Pacholewicz, and V. Popov, 2010: Application of HACCP-QMRA approach
 for managing the impact of climate change on food quality and safety. *Food Research International*, 43(7),
 1915-1924.
- Post, J., T. Conradt, F. Suckow, V. Krysanova, F. Wechsung, and F.F. Hattermann, 2008: Integrated assessment of
 cropland soil carbon sensitivity to recent and future climate in the elbe river basin. *Hydrological Sciences Journal*, 53(5), 1043-1058.
- Power, A.G., 2010: Ecosystem services and agriculture: Tradeoffs and synergies. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1554), 2959-2971.
- Pryor, S.C. and R.J. Barthelmie, 2010: Climate change impacts on wind energy: A review. *Renewable and Sustainable Energy Reviews*, 14(1), 430-437.
- Pryor, S.C., R.J. Barthelmie, N.E. Clausen, M. Drews, N. MacKeller, and E. Kjellström, 2010: Analyses of possible
 changes in intense and extreme wind speeds over northern europe under climate change scenarios. *Climate Dynamics*,.
- Pryor, S.C., R.J. Barthelmie, and E. Kjellström, 2005: Analyses of the potential climate change impact on wind
 energy resources in northern europe using output from a regional climate model. *Climate Dynamics*, 25, 815 835.
- Pryor, S.C., R.J. Barthelmie, and J.T. Schoof, 2006: Inter-annual variability of wind indices across europe. *Wind Energy*, 9(1-2), 27-38.
- Pryor, S.C. and J.T. Schoof, 2010: Importance of the SRES in projections of climate change impacts on near-surface
 wind regimes. *Meteorologische Zeitschrift*, **19(3)**, 267-274.
- Purse, B.V. et al. 2006: Spatial and temporal distribution of bluetongue and its culicoides vectors in bulgaria.
 Medical and Veterinary Entomology, 20(3), 335-344.
- Purvis, M.J., P.D. Bates, and C.M. Hayes, 2008: A probabilistic methodology to estimate future coastal flood risk
 due to sea level rise. *Coastal Engineering*, 55(12), 1062-1073.
- Quintana-Segui, P., F. Habets, and E. Martin, 2011: Comparison of past and future mediterranean high and low
 extremes of precipitation and river flow projected using different statistical downscaling methods. *Natural Hazards and Earth System Sciences*, 11(5), 1411-1432.
- Raftoyannis, Y., I. Spanos, and K. Radoglou, 2008: He decline of greek fir (*abies cephalonica* loudon):
 Relationships with root condition. *Plant Biosystems*, 142(-), 386-390.
- Räisänen, J. and J. Eklund, 2011: 21st century changes in snow climate in northern europe: A high-resolution view
 from ENSEMBLES regional climate models. *Climate Dynamics*,.
- 32 Ready, P.D., 2010: Leishmaniasis emergence in europe. *Eurosurveillance*, **15**(10), 19505.
- Reich, P.B. and J. Oleksyn, 2008: Climate warming will reduce growth and survival of scots pine except in the far
 north. *Ecology Letters*, 11(6), 588-597.
- Reidsma, P., F. Ewert, A.O. Lansink, and R. Leemans, 2009: Vulnerability and adaptation of european farmers: A
 multi-level analysis of yield and income responses to climate variability. *Regional Environmental Change*, 9(1),
 25-40.
- Renard, B., M. Lang, P. Bois, A. Dupeyrat, O. Mestre, H. Niel, E. Sauquet, C. Prudhomme, S. Parey, E. Paquet, L.
 Neppel, and J. Gailhard, 2008: Regional methods for trend detection: Assessing field significance and regional
 consistency. *Water Resources Research*, 44(8), W08419.
- Resco, d.D., C. Fischer, and C. Colinas, 2007: Climate change effects on mediterranean forests and preventive
 measures. *New Forests*, 33(1), 29-40.
- Revich, B. and D. Shaposhnikov, 2010: The effects of particulate and ozone pollution on mortality in moscow,
 russia. *Air Quality, Atmosphere & Health*, 3(2), 117-123.
- Rijnsdorp, A.D., M.A. Peck, G.H. Engelhard, C. Mollmann, and J.K. Pinnegar, 2009: Resolving the effect of
 climate change on fish populations. *ICES Journal of Marine Science*, 66(7), 1570-1583.
- 47 Rockel, B. and K. Woth, 2007: Extremes of near-surface wind speed over europe and their future changes as
 48 estimated from an ensemble of RCM simulations. *Climatic Change*, 81(Suppl 1), 267-280.
- Rocklöv, J. and B. Forsberg, 2010: The effect of high ambient temperature on the elderly population in three regions
 of sweden. *International Journal of Environmental Research and Public Health*, 7(6), 2607-2619.
- 51 Rockmann, C., R.S.J. Tol, U.A. Schneider, and St John M.A., 2009: Rebuilding the eastern baltic cod stock under
- 52 environmental change (part ii): Taking into account the costs of a marine protected area. *Natural Resource* 53 Modeling 22(1), 1, 25
- 53 *Modeling*, **22(1)**, 1-25.

- Rodolfi, A., M. Chiesi, G. Tagliaferri, P. Cherubini, and F. Maselli, 2007: Assessment of forest GPP variations in
 central italy. *Canadian Journal of Forest Research*, 37(10), 0-0.
- Roiz, D., M. Neteler, C. Castellani, D. Arnoldi, and A. Rizzoli, 2011: Climatic factors driving invasion of the tiger
 mosquito (aedes albopictus) into new areas of trentino, northern italy. *PLoS One*, 6(4).
- Roos, J., R. Hopkins, A. Kvarnheden, and C. Dixelius, 2011: The impact of global warming on plant diseases and
 insect vectors in sweden. *European Journal of Plant Pathology*, **129(1)**, 9-19.
- Rosenzweig, C., D. Karoly, M. Vicarelli, P. Neofotis, Q. Wu, G. Casassa, A. Menzel, T.L. Root, N. Estrella, B.
 Seguin, P. Tryjanowski, C. Liu, S. Rawlins, and A. Imeson, 2008: Attributing physical and biological impacts to anthropogenic climate change. *Nature*, 453, 353-357.
- Rowe, R.L., N.R. Street, and G. Taylor, 2009: Identifying potential environmental impacts of large-scale
 deployment of dedicated bioenergy crops in the UK
- 12 . Renewable and Sustainable Energy Reviews, **13(1)**, 271-290.
- RSSB, 2008: RSSB Research Supports Network Rail on Climate Change Challenge. Rail Safety and Standards
 Board, London, UK,.
- Rübbelke, D. and S. Vögele, 2010: *New Economics Papers*. Impacts of Climate Change on European Critical
 Infrastructures: The Case of the Power Sector. Basque Centre for Climate Change, Bilbao Bizkaia, Spain, 1-23
 pp.
- Rutty, M. and D. Scott, 2010: Will the mediterranean become "too hot" for tourism? A reassessment. *Tourism Planning & Development*, 7(3), 267-281.
- Sabbioni, C., A. Bonazza, and P. Messina, 2008: Global climate change and archaeological heritage: Prevision,
 impact and mapping. In: *ARCHAIA. case studies on research planning, characterisation, conservation and management of archaeological sites.* [Marchetti, N. and I. Thuesen(eds.)]. Archaeopress, Oxford, pp. 295-300.
- Sabbioni, C., P. Brimblecombe, and M. Cassar, 2010: Atlas of climate change impact on european cultural heritage.
 Anthem Press, London, pp. 160.
- Sabir, M., J. Ommeren, M. Koetse, and P. Rietveld, 2010: Adverse weather and commuting speed. *Networks and Spatial Economics*, 1-12.
- Sainz-Elipe, S., J.M. Latorre, R. Escosa, M. Masià, M.V. Fuentes, S. Mas-Coma, and M.D. Bargues, 2010: Malaria
 resurgence risk in southern europe: Climate assessment in an historically endemic area of rice fields at the
 mediterranean shore of spain. *Malaria Journal*, 9(1), 221-237.
- Sanchez-Rodriguez, R., 2009: Learning to adapt to climate change in urban areas. A review of recent contributions.
 Current Opinion in Environmental Sustainability, 1(2), 201-206.
- Santos, J.A., A.C. Malheiro, M.K. Karremann, and J.G. Pinto, 2011: Statistical modelling of grapevine yield in the
 port wine region under present and future climate conditions. *International Journal of Biometeorology*, 55(2),
 119-131.
- Sathrea, R. and L. Gustavsson, 2011: Time-dependent climate benefits of using forest residues to substitute fossil
 fuels. *Biomass and Bioenergy*, 35(7), 2506-2516.
- Sauter, T., C. Weitzenkamp, and C. Schneider, 2010: Spatio-temporal prediction of snow cover in the black forest
 mountain range using remote sensing and a recurrent neural network. *International Journal of Climatology*,
 30(15), 2330-2341.
- Schaefli, B., B. Hingray, and A. Musy, 2007: Climate change and hydropower production in the swiss alps:
 Quantification of potential impacts and related modeling uncertainties. *Hydrology & Earth System Sciences*,
 11(3), 1191-1205.
- 43 Schär, C. and G. Jendritzky, 2004: Climate change: Hot news from summer 2003. *Nature*, **432**, 559-560.
- Schelhaas, M., G. Hengeveld, M. Moriondo, G.J. Reinds, Z.W. Kundzewicz, H. Ter Maat, and M. Bindi, 2010:
 Assessing risk and adaptation options to fires and windstorms in european forestry. *Mitigation and Adaptation* Strategies for Global Change, 15, 681-701 ST - Assessing risk and adaptation option.
- Schleip, C., T.H. Sparks, N. Estrella, and A. Menzel, 2009: Spatial variation in onset dates and trends in phenology
 across europe. *Climate Research*, **39**, 249-260.
- Schneider, C. and J. Schönbein (eds.), 2006: *Klimatologische analyse der schneesicherheit und beschneibarkeit von wintersportgebieten in deutschen mittelgebirgen*. Schriftenreihe Natursport und Ökologie, Deutsche
 Sporthochschule Köln (Hrsg.), pp. 1-111.
- 52 Schneider, C., J. Schönbein, G. Ketzler, and M. Buttstädt, 2006: Winterklima, klimawandel und schneesport in
- 53 deutschen mittelgebirgen. *FdSnow*, **29**, 2-11.

1 Scholz, G., J.N. Quinton, and P. Strauss, 2008: Soil erosion from sugar beet in central europe in response to climate 2 change induced seasonal precipitation variations. Catena, 72(1), 91-105. 3 Schönbein, J. and C. Schneider, 2005: Zur klimatologie der winterlichen schneedecke deutscher mittelgebirge. 4 GEOÖKO, 26, 197-216. 5 Schulze, E.D., S. Luyssaert, P. Ciais, a. Freibauer, e.a. Janssens, J.F. Soussana, P. Smith, J. Grace, I. Levin, B. 6 Thiruchittampalam, M. Heimann, a.J. Dolman, R. Valentini, P. Bousquet, P. Peylin, W. Peters, C. RAydenbeck, 7 G. Etiope, N. Vuichard, M. Wattenbach, G.J. Nabuurs, Z. Poussi, J. Nieschulze, and J.H. Gash, 2010: 8 Importance of methane and nitrous oxide for europe's terrestrial greenhouse-gas balance. *Nature Geoscience*, 9 2(12), 842-850. 10 Schutze, N. and G.H. Schmitz, 2010: OCCASION: New planning tool for optimal climate change adaption 11 strategies in irrigation. Journal of Irrigation and Drainage Engineering-Asce, 136(12), 836-846. 12 Schwierz, C., P. Köllner-Heck, E. Zenklusen Mutter, D.N. Bresch, P. Vidale, M. Wild, and C. Schär, 2010: 13 Modelling european winter wind storm losses in current and future climate. Climatic Change, 101(3), 485-514. 14 Seidl, R., W. Rammer, and M.J. Lexer, 2011: Adaptation options to reduce climate change vulnerability of 15 sustainable forest management in the austrian alps. Canadian Journal of Forest Research, 41(4), 694-706. 16 Semenov, M.A., 2009: Impacts of climate change on wheat in england and wales. Journal of the Royal Society 17 Interface, 6(33), 343-350. 18 Serguet, G. and M. Rebetez, 2011: Relationship between tourism demand in the swiss alps and hot summer air 19 temperatures associated with climate change. Climatic Change,. 20 Sevigne, E., C.M. Gasol, F. Brun, L. Rovira, J.M. Pagés, F. Camps, J. Rieradevall, and X. Gabarrell, 2011: Water 21 and energy consumption of populus spp. bioenergy systems: A case study in southern europe. Renewable and 22 Sustainable Energy Reviews, 15(2), 1133-1140. 23 Shiklomanov, A.I., R.B. Lammers, M.A. Rawlins, L.C. Smith, and T.M. Pavelsky, 2007: Temporal and spatial 24 variations in maximum river discharge from a new russian data set. Journal of Geophysical Research, 112. 25 Slangen, A., C. Katsman, R. van de Wal, L. Vermeersen, and R. Riva, 2011: Towards regional projections of 26 twenty-first century sea-level change based on IPCC SRES scenarios. Climate Dynamics, 1-19. 27 Slippers, B. and M. Wingfield, 2007: Botryosphaeriaceae as endophytes and latent pathogens of woody plants: 28 Diversity, ecology and impact. Fungal Biology Reviews, 21(2-3), 90-106. 29 Smit, H.J., M.J. Metzger, and F. Ewert, 2008: Spatial distribution of grassland productivity and land use in europe. 30 Agricultural Systems, 98(3), 208-219. 31 Solberg, S., Ø. Hov, A. Søvde, I.S.A. Isaksen, P. Coddeville, H. De Backer, C. Forster, Y. Orsolini, and K. Uhse, 32 2008: European surface ozone in the extreme summer 2003. Journal of Geophysical Research, 113. 33 Solymosi, N., C. Torma, A. Kern, A. Maróti-Agóts, Z. Barcza, L. Könyves, O. Berke, and J. Reiczigel, 2010: 34 Changing climate in hungary and trends in the annual number of heat stress days. International Journal of 35 Biometeorology, 54(4), 423-431. 36 Soussana, J.F., A.I. Graux, and F.N. Tubiello, 2010: Improving the use of modelling for projections of climate 37 change impacts on crops and pastures. Journal of Experimental Botany, 61(8), 2217-2228. 38 Soussana, J.F. and A. Luscher, 2007: Temperate grasslands and global atmospheric change: A review. Grass and 39 Forage Science, 62(2), 127-134. 40 Sparks, T.H., B. Jaroszewicz, M. Krawczyk, and P. Tryjanowski, 2009: Advancing phenology in europe's last 41 lowland primeval forest: Non-linear temperature response. Climate Research, 39, 221-226. 42 Stafoggia, M., F. Forastiere, D. Agostini, N. Caranci, F. de'Donato, M. Demaria, P. Michelozzi, R. Miglio, M. 43 Rognoni, A. Russo, and C.A. Perucci, 2008: Factors affecting in-hospital heat-related mortality: A multi-city 44 case-crossover analysis. Journal of Epidemiology and Community Health, 62(3), 209-215. 45 Stanzel, P. and H.P. Nachtnebel, 2010: Mögliche auswirkungen des klimawandels auf den wasserhaushalt und die 46 wasserkraftnutzung in österreich. Österreichische Wasser-Und Abfallwirtschaft, 62(9-10), 180-187. 47 Steele-Dunne, S., P. Lynch, R. McGrath, T. Semmler, S. Wang, J. Hanafin, and P. Nolan, 2008: The impacts of 48 climate change on hydrology in ireland. Journal of Hydrology, 356(1-2), 28-45. 49 Steiger, R., 2010a: The impact of climate change on ski season length and snowmaking requirements in tyrol, 50 austria. Climate Research, 43, 251-262. 51 Steiger, R., 2010b: The impact of climate change on ski touristic demand using an analogue approach. In: Strategies, 52 policies and measures for the tourism industry. [Weiermair, K., H. Pechlaner, A. Strobl, and M. Elmi(eds.)]. 53 Innsbruck University Press, Innsbruck,.

- Steiger, R., 2011: The impact of snow scarcity on ski tourism. an analysis of the record warm season 2006/07 in
 tyrol (austria). *Tourism Review*,.
- Steiger, R. and M. Mayer, 2008: Snowmaking and climate change. *Mountain Research and Development*, 28(3-4),
 292-298.
- Sterl, A., H. van den Brink, H. de Vries, R. Haarsma, and E. van Meijgaard, 2009: An ensemble study of extreme
 storm surge related water levels in the north sea in a changing climate. *Ocean Science*, 5(3), 369-378.
- Stewart, I.T., 2009: Changes in snowpack and snowmelt runoff for key mountain regions. *Hydrological Processes*,
 23(1), 78-94.
- Stoate, C., A. BÃ_ildi, P. Beja, N.D. Boatman, I. Herzon, A. van Doorn, de Snoo G.R., L. Rakosy, and C. Ramwell,
 2009: Ecological impacts of early 21st century agricultural change in europe--a review. *Journal of Environmental Management*, 91(1), 22-46.
- Storm, J., A.W. Cattaneo, and F. Trincardi, 2008: Coastal dynamics under conditions of rapid sea-level rise: Late
 pleistocene to early holocene evolution of barrier-lagoon systems on the northern adriatic shelf (italy).
 Quaternary Science Reviews, 27(11-12), 1107-1123.
- Streftaris, N., A. Zenetos, and E. Papathanassiou, 2005: Globalisation in marine ecosystems: The story of non indigenous marine species across european seas. *Oceanogr Mar Biol-an Annual Review*, 43, 419-453.
- Swinbank, A., 2009: EU policies on bioenergy and their potential clash with the WTO. *Journal of Agricultural Economics*, 60(3), 485-503.
- Tasker, M.L., 2008: The Effect of Climate Change on the Distribution and Abundance of Marine Species in the
 OSPAR Maritime Area, 49-49 pp.
- te Linde, A.H., J.C.J.H. Aerts, A.M.R. Bakker, and J.C.J. Kwadijk, 2010: Simulating low-probability peak
 discharges for the rhine basin using resampled climate modeling data. *Water Resources Research*, 46(3).
- Te Linde, A.H., P. Bubeck, J.E.C. Dekkers, H. de Moel, and Aerts, J. C. J. H., 2011: Future flood risk estimates
 along the river rhine. *Natural Hazards and Earth System Sciences*, 11(2), 459-473.
- Te Linde, A.H., 2007: Effects of climate change on discharge behaviour of the river rhine. In: [Heinongen, M. (ed.)].
 Proceedings of Proceedings of the third international conference on climate and water. 3 6 September 2007,
 Helsinki, Finland,.
- Te Linde, A.H., J.C.J.H. Aerts, and J.C.J. Kwadijk, 2010: Effectiveness of flood management measures on peak
 discharges in the rhine basin under climate change. *Journal of Flood Risk Management*, 3(4), 248-269.
- ter Hofstede, R., J. Hiddink, and A. Rijnsdorp, 2010: Regional warming changes fish species richness in the eastern
 north atlantic ocean. *Marine Ecology Progress Series*, 414, 1-9.
- Terpstra, T. and J.M. Gutteling, 2008: Households' perceived responsibilities in flood risk management in the
 netherlands. *International Journal of Water Resources Development*, 24(4), 555-565.
- Tester, M. and P. Langridge, 2010: Breeding technologies to increase crop production in a changing world. *Science* (*New York, N.Y.*), **327(5967)**, 818-22.
- Teuling, A.J., S.I. Seneviratne, R. Stoeckli, M. Reichstein, E. Moors, P. Ciais, S. Luyssaert, B. Van den Hurk, C.
 Ammann, C. Bernhofer, E. Dellwik, D. Gianelle, B. Gielen, T. Gruenwald, K. Klumpp, L. Montagnani, C.
 Moureaux, M. Sottocornola, and G. Wohlfahrt, 2010: Contrasting response of european forest and grassland
 energy exchange to heatwaves. *Nature Geoscience*, 3(10), 722-727.
- Thackeray, S.J., T.H. Sparks, M. Fredericksen, S. Burthe, P.J. Bacon, J.R. Bell, M.S. Botham, T.M. Brereton, P.W.
 Bright, L. Carvalho, T. Clutton-Brock, A. Dawson, M. Edwards, J.M. Elliott, R. Harrington, D. Johns, I.D.
 Jones, J.T. Jones, D.I. Leech, D.B. Roy, W.A. Scott, M. Smith, R.J. Smithers, I.J. Winfield, and S. Wanless,
- Jones, J.T. Jones, D.I. Leech, D.B. Roy, W.A. Scott, M. Smith, R.J. Smithers, I.J. Winfield, and S. Wanless,
 2010: Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial
 environments. *Global Change Biology*, 16(12), 3304-3313.
- Thodsen, H., B. Hasholt, and J.H. Kjarsgaard, 2008: The influence of climate change on suspended sediment
 transport in danish rivers. *Hydrological Processes*, 22(6), 764-774.
- Thodsen, H., 2007: The influence of climate change on stream flow in danish rivers. *Journal of Hydrology*, 333(2-4), 226-238.
- Thornton, P.K., 2010: Livestock production: Recent trends, future prospects. *Philosophical Transactions of the Royal Society B-Biological Sciences*, 365(1554), 2853-2867.
- 51 Tobías, A., P. García de Olalla, C. Linares, M.J. Bleda, J.A. Caylà, and J. Díaz, 2010: Short-term effects of extreme
- hot summer temperatures on total daily mortality in barcelona, spain. *International Journal of Biometeorology*,
 53 54(2), 115-117.

- Trnka, M., J. Eitzinger, P. Hlavinka, et al. 2009: Climate-driven changes of production regions in central europe.
 Plant and Soil, 2009(521), 257-266.
- Trnka, M., F. Muska, D. Semeradova, M. Dubrovsky, E. Kocmankova, and Z. Zalud, 2007: European corn borer life
 stage model: Regional estimates of pest development and spatial distribution under present and future climate.
 Ecological Modelling, 207(2-4), 61-84.
- Tu, M., M.J. Hall, P.J.M. de Laat, and M.J.M. de Wit, 2005: Extreme floods in the meuse river over the past
 century: Aggravated by land-use changes? *Physics and Chemistry of the Earth, Parts A/B/C*, 30(4-5), 267-276.
- Tubiello, F.N., J.F. Soussana, and S.M. Howden, 2007: Crop and pasture response to climate change. *Proceedings of the National Academy of Sciences of the United States of America*, **104(50)**, 19686-19690.
- Tuck, G., M.J. Glendining, P. Smith, J.I. House, and M. Wattenbach, 2006: The potential distribution of bioenergy
 crops in europe under present and future climate. *Biomass and Bioenergy*, 30(3), 183-197.
- Uhlmann, B., S. Goyette, and M. Beniston, 2009: Sensitivity analysis of snow patterns in swiss ski resorts to shifts
 in temperature, precipitation and humidity under conditions of climate change. *International Journal of Climatology*, 29(8), 1048-1055.
- Ulbrich, U., G.C. Leckebusch, and J.G. Pinto, 2009: Extra-tropical cyclones in the present and future climate: A
 review. *Theoretical and Applied Climatology*, 96(1-2), 117-131.
- Ulén, B.M. and G.A. Weyhenmeyer, 2007: Adapting regional eutrophication targets for surface waters--influence of
 the EU water framework directive, national policy and climate change. *Environmental Science & Policy*, 10(7 8), 734-742.
- UNEP, 2010: Global Synthesis A Report from the Regional Seas Conventions and Action Plans for the Marine
 Biodiversity Assessment and Outlook Series.
- Vafeidis, A.T., R.J. Nicholls, L. McFadden, R.S.J. Tol, J. Hinkel, T. Spencer, P.S. Grashoff, G. Boot, and R.J.T.
 Klein, 2008: A new global coastal database for impact and vulnerability analysis to sea-level rise. *Journal of Coastal Research*, 24(8), 917-924.
- Valle, M.D., E. Codato, and A. Marcomini, 2007: Climate change influence on POPs distribution and fate: A case
 study. *Chemosphere*, 67(7), 1287-1295.
- van Dijk, J., N.D. Sargison, F. Kenyon, and P.J. Skuce, 2010: Climate change and infectious disease:
 Helminthological challenges to farmed ruminants in temperate regions. *Animal*, 4(3), 377-392.
- van Vliet, M.T.H. and J.J.G. Zwolsman, 2008: Impact of summer droughts on the water quality of the meuse river.
 Journal of Hydrology, 353(1-2), 1-17.
- van, d.V., G. Wriedt, and F. Bouraoui, 2010: Estimating irrigation use and effects on maize yield during the 2003
 heatwave in france. *Agriculture Ecosystems & Environment*, 135(1-2), 90-97.
- Veijalainen, N., E. Lotsari, P. Alho, B. Vehviläinen, and J. Käyhkö, 2010: National scale assessment of climate
 change impacts on flooding in finland. *Journal of Hydrology*, **391(3-4)**, 333-350.
- Verheijen, F.G.A., R.J.A. Jones, R.J. Rickson, and C.J. Smith, 2009: Tolerable versus actual soil erosion rates in
 europe. *Earth-Science Reviews*, 94(1), 23-38.
- Verkerka, P.J., P. Anttilab, J. Eggersa, M. Lindnera, and A. Asikainen, 2011: The realisable potential supply of
 woody biomass from forests in the european union. *Forest Ecology and Management*, 261(11), 2007-2015.
- Villarini, G., J.A. Smith, F. Serinaldi, and A.A. Ntelekos, 2011: Analyses of seasonal and annual maximum daily
 discharge records for central europe. *Journal of Hydrology*, **399**(3-4), 299-312.
- Vos, C.C., P. Berry, P. Opdam, H. Baveco, B. Nijhof, J. OíHanley, C. Bell, and H. Kuipers, 2008: Adapting
 landscapes to climate change: Examples of climate-proof ecosystem networks and priority adaptation zones. *Journal of Applied Ecology*, 45(6), 1722-1731.
- Walther, G.R., A. Roques, P.E. Hulme, M.T. Sykes, P. Pyšek, I. Kühn, M. Zobel, S. Bacher, Z. Botta-Dukát, H.
 Bugmann, B. Czúcz, J. Dauber, T. Hickler, V. Jarošík, M. Kenis, S. Klotz, D. Minchin, M. Moora, W. Nentwig,
 J. Ott, V.E. Panov, B. Reineking, C. Robinet, V. Semenchenko, W. Solarz, W. Thuiller, M. Vilà, K. Vohland,
 and J. Settele, 2009: Alien species in a warmer world: Risks and opportunities. *Trends in Ecology & Evolution*,
 24(12), 686-693.
- Wang, S., R. Mcgrath, T. Semmler, and P. Nolan, 2006: The impact of the climate change on discharge of suir river
 catchment (ireland) under different climate scenarios. *Natural Hazards and Earth System Science*, 6(3), 387 395.
- Wang, S., R. McGrath, J. Hanafin, P. Lynch, T. Semmler, and P. Nolan, 2008: The impact of climate change on
 storm surges over irish waters. *Ocean Modelling*, 25(1-2), 83-94.

- Wantzen, K.M., W.J. Junk, and K.O. Rothhaupt, 2008: An extension of the floodpulse concept (FPC) for lakes.
 Hydrobiologia, 613, 151-170.
- Ward, P., H. Renssen, J. Aerts, and P. Verburg, 2011: Sensitivity of discharge and flood frequency to twenty-first
 century and late holocene changes in climate and land use (river meuse, northwest europe). *Climatic Change*,
 106(2), 179-202.
- Wasowski, J., C. Lamanna, and D. Casarano, 2010: Influence of land-use change and precipitation patterns on
 landslide activity in the daunia apennines, italy. *Quarterly Journal of Engineering Geology and Hydrogeology*,
 43(4), 387-401.
- Wassmann, P., C.M. Duarte, S. Agusti, and M.K. Sejr, 2011: Footprints of climate change in the arctic marine
 ecosystem. *Global Change Biology*, **17**(2), 1235-1249.
- Weber, R.W.S., 2009: An evaluation of possible effects of climate change on pathogenic fungi in apple production
 using fruit rots as examples. *Erwerbs-Obstbau*, 51(3), 115-120.
- Wedawatta, G., B. Ingirige, and D. Amaratunga, 2010: Building up resilience of construction sector SMEs and their
 supply chains to extreme weather events. *International Journal of Strategic Property Management*, 14(4), 362 375.
- Wessolek, G. and S. Asseng, 2006: Trade-off between wheat yield and drainage under current and climate change
 conditions in northeast germany. *European Journal of Agronomy*, 24(4), 333-342.
- Whitehead, P.G., R.L. Wilby, R.W. Battarbee, M. Kernan, and A.J. Wade, 2009: A review of the potential impacts
 of climate change on surface water quality. *Hydrological Sciences Journal*, 54(1), 101-123.
- Whitehead, P.G., R.L. Wilby, D. Butterfield, and A.J. Wade, 2006: Impacts of climate change on in-stream nitrogen
 in a lowland chalk stream: An appraisal of adaptation strategies. *Science of the Total Environment*, 365(1-3),
 260-273.
- Wiering, M.A. and B.J.M. Arts, 2006: Discursive shifts in dutch river management: 'deep' institutional change or
 adaptation strategy? In: *Living rivers: Trends and challenges in science and management*. [Leuven, R.S.E.W.,
 A.M.J. Ragas, A.J.M. Smits, and G. Velde(eds.)]. Springer Netherlands, pp. 327-338; 338.
- Wilby, R.L., P.G. Whitehead, A.J. Wade, D. Butterfield, R.J. Davis, and G. Watts, 2006: Integrated modelling of
 climate change impacts on water resources and quality in a lowland catchment: River kennet, UK. *Journal of Hydrology*, 330(1-2), 204-220.
- Wilson, S.D. and C. Nilsson, 2009: Arctic alpine vegetation change over 20 years. *Global Change Biology*, 15(7),
 1676-1684.
- Wilson, A.J. and P.S. Mellor, 2009: Bluetongue in europe: Past, present and future. *Philosophical Transactions of the Royal Society B-Biological Sciences*, 364(1530), 2669-2681.
- 33 Witmer, U., 1986: Erfassung, bearbeitung und kartierung von schneedaten in der schweiz. *Geographica Bernensia*,.
- Wolfsegger, C., S. Gossling, and D. Scott, 2008: Climate change risk appraisal in the austrian ski industry. *Tourism Review International*, 12(1), 13-23.
- Woltjer, M., W. Rammer, M. Brauner, R. Seidl, G.M.J. Mohren, and M.J. Lexer, 2008: Coupling a 3D patch model
 and a rockfall module to assess rockfall protection in mountain forests. *Journal of Environmental Management*,
 87(3), 373-388.
- Yiou, P., P. Ribereau, P. Naveau, M. Nogaj, and R. Brazdil, 2006: Statistical analysis of floods in bohemia (czech republic) since 1825. *Hydrological Sciences Journal*, 51(5), 930-945.
- Zachariadis, T., 2010: Forecast of electricity consumption in cyprus up to the year 2030: The potential impact of
 climate change. *Energy Policy*, 38(2), 744-750.
- Zairatiants, O.V., A.L. Cherniaev, N.I. Polianko, V.V. Osadchaya, and A.E. Trusov, 2011: The structure of mortality
 from cardio-respiratory diseases in moscow during the extremely hot summer of 2010. *Journal of Bronchology & Interventional Pulmonology*, (4).
- Zylicz, T., 2010: Goals and principles of environmental policy. *International Review of Environmental and Resource Economics*, 3(4), 299-334.
- 48

Table 23-1: Changes in key parameters for all sub-regions and relevant sectors projected/expected changes including changes in extremes - if possible. Identification of possible range of changes. [Forthcoming]]

Table 23-2: Observed changes in natural and mana	ged systems to observed	l climate change (pape	ers published since
the AR4).			

Region	Observed change	References
Coastal and marine	-	
systems		
Arctic marine biota	Northward range shifts for various subarctic and temperate	(Wassmann et al.,
(plankton, benthos, fish,	species, changes in growth/condition, in	2011)
birds, mammals)	behaviour/phenology, and in abundance of key organisms,	
	rearrangement of food webs and communities (mainly	
	marine mammals and fish)	
North Atlantic Ocean	Rapid northward shifts of zooplankton (~ 23 km yr ⁻¹) in	(Beaugrand <i>et al.</i> ,
	response to rising sea surface temperatures, by far larger	2009)
	than for terrestrial ecosystems	
Terrestrial ecosystems		
Altitudinal distribution of	Significant upward shift in plant species optima in France.	(Gehrig-Fasel et al.,
forest plant species in	90% of the upward shifts in Switzerland represent	2007; Lenoir et al.,
Western Europe and	ingrowth related both to land use and climate change,	2008)
alpine tree line in	however below the potential regional tree line land use is	
Switzerland	the most likely driver.	
Distribution of plant	Strength of the flowering response of native plants to	(Hulme, 2011)
species across the British	climate change is linked to the degree to which their	
Isles	relative distributions changed over the last 30yr. Alien	
	species exhibit stronger advances in phenology and	
	increases in distribution, however unrelated.	
Spread of alien species	Increasing number of colonization events and subsequent	(Walther et al., 2009)
(worldwide, Europe)	establishment of species originating from regions with a	
	warmer climate than in the area of establishment and	
	spread in response to changed climatic conditions of the	
	recent past	
Community composition	Arctic alpine vegetation changed over 20 years by an	(Wilson and Nilsson,
in an arctic mountainside	increase in shrub cover and a loss of species richness	2009)
in northern Sweden		
Geographical range of	Northwards and upwards expansion of the distribution of	(Battisti <i>et al.</i> , 2005)
an insect in north-central	pine processionary moth linked to increased winter	
France and northern	survival over the past three decades	
Italy (Alps)		
Distribution and	Populations of seven wader species show substantial shifts	(Maclean <i>et al.</i> , 2008)
abundance of birds species	of up to 115 km northeast with abundance positively	
in western Europe	influenced by winter temperatures	
Phenology in Central	Widespread advances in spring and summer phenology	(Schleip <i>et al.</i> , 2009;
Europe	with new evidence for (1) non-linear temperature	Sparks <i>et al.</i> , 2009)
	responses, (2) marked spatial variability, e.g. pronounced	
	changes in maritime Western and Central Europe, (3)	
	predominantly non-linear phenological changes, especially	
	in the north-western part	

Phenology in	Warm and dry springs advance flowering, leaf unfolding	(Gordo and Sanz,
Mediterranean ecosystems	and fruiting dates and lengthen the growing season	2010)
Phenology of aphids in	Earlier flight phenology of aphids related to spring	(Harrington et al.,
Europe	temperatures	2007)
Mistiming of plant-	Considerable variation in the magnitude of plant and	(Hegland et al., 2009)
pollinator interactions	pollinator responses to warming may generate temporal	
	mismatches among mutual partners, however overall	
	structure of pollination networks is probably more robust	
Phenology of UK	Majority of spring and summer events advanced more	(Thackeray et al.,
terrestrial, freshwater and	rapidly than previously documented, however with a	2010)
marine taxa	strong asynchrony in rates of change across trophic levels,	
	slowest for secondary consumers	
Mistiming in bird	Population declines in a long-distance migratory bird	(Both <i>et al.</i> , 2006)
migration in the	linked to a too early peak in food in respect to arrival times	
Netherlands		
Fish communities of large	Changes in total abundance, structures and diversity of fish	(Daufresne and Boet,
rivers in France	communities, significantly linked to temperature during	2007)
	reproduction, e.g. increasing abundance and proportion of	
	warm-water species	
Agriculture		
Plant phenology in	Significant advance of agricultural and horticultural	(Estrella <i>et al.</i> , 2007;
Germany / Europe	phenology related to warming; the average temperature	Estrella <i>et al.</i> , 2009)
	response of annual crops being smaller than of perennial	
	plants	$(\mathbf{I}_{\mathbf{I}_{\mathbf{I}}})$
Mushrooms in Norway	Mean autumnal fruiting dates of mushrooms delayed by	(Kauserud <i>et al.</i> , 2008)
Human haalth	12.9 days since 1980	
Dollon coordin Europa	Farlier engat of Dirch pollon ganger with higher ennuel	(D A mata at al. 2007)
Switzerland and Southern	birsh pollon quantities increase of the highest doily mean	(D'Alliato <i>et al.</i> , 2007, Eroi and Gassner
Switzenand and Southern	pollen concentrations in Basel Early onset and peak of	2008: Caroia Mozo at
Span	grass pollen season in Spain	al = 2010
Animal health	grass ponen season in Spani.	<i>u</i> ., 2010)
Emergence of blue tongue	Northern extension of disease distribution expansion of	(Mellor at al. 2008)
disease	distribution of major vector. Culicoides inicola, and	Purse $et al = 2006$
aibeabe	involvement of novel <i>Culicoides</i> vector(s)	Wilson and Mellor
		2009)

Table 23-3: Observed impacts and responses (empirical studies post 2006, with criteria). [forthcoming]

Figure 23-1: Sub-regions within Europe.

Figure 23-2: Horizontal maps of seasonal precipitation changes (%) covering all sub regions including robustness measure (e.g. stippled for large number of model in trend agreement). [Notes: Figure under development. Further, if not covered in Chapter 21, would generate a like graphic for temperature to include standard deviation as robustness measure.]]